UNIVERSIDADE FEDERAL DE ALFENAS

JULIANA PEREIRA DE OLIVEIRA

DETERMINAÇÃO DA ESTABILIDADE DE FASES À 1300°C DO SISTEMA AI₂O₃-Y₂O₃-Ta₂O₅

JULIANA PEREIRA DE OLIVEIRA

DETERMINAÇÃO DA ESTABILIDADE DE FASES À 1300°C DO SISTEMA Al₂O₃-Y₂O₃-Ta₂O₅

Dissertação como parte dos requisitos para a obtenção de título de Mestre em Ciência e Engenharia de Materiais pelo Programa de Pós-Graduação em Ciência e Engenharia de Materiais pela Universidade Federal de Alfenas – campus Poços de Caldas. Área de concentração: Desenvolvimento, Caracterização e Aplicação de Materiais.

Orientador: Prof. Dr. Alfeu Saraiva Ramos

Sistema de Bibliotecas da Universidade Federal de Alfenas

Biblioteca Campus Poços de Caldas

Oliveira, Juliana Pereira de.

Determinação da estabilidade de fases à 1300°C do sistema Al_2O_3 - Y_2O_3 - Ta_2O_5 / Juliana Pereira de Oliveira. - Poços de Caldas, MG, 2023. 79 f. : il. -

Orientador(a): Alfeu Saraiva Ramos.

Dissertação (Mestrado em Ciência e Engenharia de Materiais) -Universidade Federal de Alfenas, Poços de Caldas, MG, 2023. Bibliografia.

1. Diagrama de Fases. 2. Tratamento Térmico. 3. Óxido de Alumínio. 4. Óxido de Ítrio. 5. Pentóxido de Tântalo. I. Ramos, Alfeu Saraiva, orient. II. Título.

JULIANA PEREIRA DE OLIVEIRA

DETERMINAÇÃO DA ESTABILIDADE DE FASES À 1300°C DO SISTEMA Al₂O₃-Y₂O₃-Ta₂O₅

O Presidente da banca examinadora abaixo assina aaprovação da Dissertação apresentada como parte dos requisitos para a obtenção do título de Mestre em Ciência e Engenharia de Materiais pela Universidade Federal de Alfenas. Área de concentração: Ciência e Engenharia de Materiais.

Aprovada em: 31 de maio de 2023.

Prof. Dr. Alfeu Saraiva Ramos Presidente da Banca Examinadora

Instituição: Universidade Federal de Alfenas

Prof. Dr. Claudinei dos Santos

Instituição: Universidade do Estado do Rio de Janeiro

Prof. Dr. Bruno Xavier de Freitas

Instituição: Universidade Federal de Itajubá

Documento assinado eletronicamente por Alfeu Saraiva Ramos, Professor do Magistério Superior, em 04/06/2023, às 23:30, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site <a href="https://sei.unifal-no.ni/mital-no. mg.edu.br/sei/controlador externo.php? acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 1007737 e o código CRC 71DE6C1A.

AGRADECIMENTOS

Agradeço à Deus, por me guiar em cada passo e sempre me dar força e coragem para sempre correr atrás dos meus maiores sonhos.

Agradeço aos meus pais, Marli e João, por cada incentivo, cada empurrão com sentimento de você consegue, cada palavra, por sempre me ouvirem e por todo amor de todo dia.

Ao Otávio, por todo amor, carinho, apoio e por ser todos ouvidos durante minhas trajetórias.

Ao meu irmão Mateus, por todo companheirismo e amizade. E aos meus queridos amigos, Vitória, Raphael e Nayara, por toda amizade, conversas, apoios, risadas e cumplicidade de anos.

Ao meu orientador Alfeu, por toda compreensão, paciência e incrível sabedoria.

Ao professor Bruno Xavier por toda ajuda durante a execução das técnicas de caracterização de DRX, MEV e EDS. Por todo suporte técnico e pelo auxílio nas ferramentas para que pudessem enriquecer o estudo.

Ao professor Claudinei dos Santos, por toda orientação e conselhos, pela disponibilização da Itria e Alumina.

Agradeço aos professores Claudinei dos Santos e Bruno Xavier pela dedicação, paciência, conhecimentos passados na banca de defesa e orientações para a melhoria.

Ao Instituto Federal de São João, apoio técnico do Denilson Zaidan pelo auxílio durante o tratamento térmico de 150 horas.

Ao Departamento de Engenharia de Materiais de Lorena, pela disponibilização dos laboratórios e equipamentos que com o apoio do Bruno Xavier se tornaram possíveis termos os resultados para continuação do estudo.

À Universidade Feral de Alfenas, ao Programa de Pós-graduação em Ciência e Engenharia dos Materiais – PPGCEM e a todos professores, por toda base para realização deste trabalho.

Deixo meus sinceros agradecimentos às muitas pessoas que de forma indireta ou diretamente colaboraram para que esse trabalho se tornasse realidade.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

(...) When I talked about it

Carried on

Reasons only knew (...)

Big Me – Foo Fighters

RESUMO

Cerâmicas do sistema pseudo-ternário Al₂O₃-Y₂O₃-Ta₂O₅ apresentam potencial para aplicações em áreas de engenharia devido as propriedades mecânicas de compressão e tenacidade à fratura de cerâmicas de Al₂O₃-Y₂O₃ e outras de Al₂O₃-Ta₂O₅ relacionadas com processos catalíticos. No entanto, não foram encontradas na literatura informações sobre a estabilidade de fases no sistema Al₂O₃-Y₂O₃-Ta₂O₅. Dessa forma, a presente dissertação visa a determinação da estabilidade de fases à 1300°C deste sistema pseudo-ternário. Informações provenientes dos sistemas pseudo-binários correspondentes serão utilizados para uma proposição inicial de possíveis regiões bifásicas e/ou trifásicas. A partir destas informações, diferentes composições químicas, em %-molar, foram consideradas, sendo as misturas de pós de Al₂O₃, Y₂O₃ e Ta₂O₅ homogeneizadas em moinho de bolas por 10 min, utilizando vaso de WC (80mL) e esferas de alumina (10mm de diâmetro), para minimizar a contaminação. Na sequência, pastilhas com 10mm de diâmetro foram compactadas por prensagem uniaxial de 187 MPa. Os compactados à verde das cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ foram tratados termicamente à 1300°C por 72 h e 222 h, visando a obtenção de microestruturas de equilíbrio. Amostras de cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ tratadas termicamente foram caracterizadas por difratometria de raios X, microscopia eletrônica de varredura e espectrometria por energia dispersiva. Os resultados têm confirmado а existência das regiões trifásicas de Y₂O₃+Y₄Al₂O₉+Y₃TaO₇ e YTa₇O₁₉+AlTaO₄+Ta₂O₅, a partir das composições químicas de $11,11Al_2O_3 - 8,33Ta_2O_5 - 80,56Y_2O_3$ e $16,67Al_2O_3 - 78,57Ta_2O_5 - 4,76Y_2O_3$ (%-molar), respectivamente.

Palavras-chave: diagrama de fases; tratamentos térmicos; óxido de alumínio; óxido de ítrio; pentóxido de tântalo.

ABSTRACT

Ceramics of pseudo-ternary Al₂O₃-Y₂O₃-Ta₂O₅ system have potential for applications in engineering areas due to the mechanical properties in compression and fracture toughness of Al₂O₃-Y₂O₃ ceramics and others Al₂O₃-Ta₂O₅ ceramics related to catalytic processes. However, no information on the phase stability of the Al₂O₃-Y₂O₃-Ta₂O₅ system was found in the literature. Thus, the present research aims to determine the phase stability at 1300°C of this pseudo-ternary system. Information from the corresponding pseudo-binary systems will be used for an initial proposition of possible biphasic and/or three-phase regions. Based on this information, different chemical compositions, in mol-%, were considered. After weighing, the mixtures of Al₂O₃, Y₂O₃ and Ta₂O₅ powders were homogenized in a ball mill for 10 min, using a WC vial (80mL) and alumina balls (10mm in diameter), to minimize their contamination. In sequence, the cylinder samples with 10 mm diameter were prepared by axial pressing of 187 MPa. The green compacts of Al₂O₃-Y₂O₃-Ta₂O₅ ceramics were heat-treated at 1300°C for 72 h and 222 h, aiming to obtain equilibrium microstructures. Samples of heattreated Al₂O₃-Y₂O₃-Ta₂O₅ ceramics were characterized by means of X-ray diffractometry, scanning electron microscopy and energy dispersive spectrometry techniques. The results have confirmed the existence of three-phase $Y_2O_3+Y_4Al_2O_9+Y_3TaO_7$ and $YTa_7O_{19}+AlTaO_4+Ta_2O_5$ regions from the 11.11Al₂O₃ – 8.33Ta₂O₅-80.56Y₂O₃ and 16.67Al₂O₃-78.57Ta₂O₅-4.76Y₂O₃ (mol-%), respectively.

Keywords: phase diagram; heat treatment; aluminum oxide; yttrium oxide; tantalum pentoxide.

LISTA DE FIGURAS

Figura 1 -	Diagrama de fases Al ₂ O ₃ -Y ₂ O ₃	23
Figura 2 -	Diagrama de Fases do sistema Al ₂ O ₃ -Y ₂ O ₃	26
Figura 3 -	Diagrama de Fases do sistema Al ₂ O ₃ -Y ₂ O ₃ -SiC	26
Figura 4 -	Representação esquemática de fases de Al ₂ O ₃ -Ta ₂ O ₅	27
Figura 5 -	Micrografia da superfície após polimento da amostra da fase	
	Al ₂ O ₃ -Ta ₂ O ₅	28
Figura 6 -	Diagrama de fases do sistema Y ₂ O ₃ -Ta ₂ O ₅	29
Figura 7 -	Diagrama de fases do sistema Y ₂ O ₃ -Ta ₂ O ₅	29
Figura 8 -	Seção isotérmica à 1300°C do sistema Al ₂ O ₃ -Y ₂ O ₃ -Ta ₂ O ₅ ,	
	inicialmente proposta, em função das fases consideradas dos	
	sistemas binários correspondentes	32
Figura 9 -	Diagrama de fases do sistema pseudo-ternário proposta para	
	o sistema Al ₂ O ₃ -Ta ₂ O ₅ -Y ₂ O ₃ , com cotas	33
Figura 10 -	Fluxograma mostrando as etapas previstas para o	
	desenvolvimento do presente estudo	36
Figura 11 -	Pastilhas compactadas das amostras de Al ₂ O ₃ -Y ₂ O ₃ -Ta ₂ O ₅	
	avaliadas neste estudo	37
Figura 12 -	Forno utilizado para o tratamento térmico por 72 h das	
	cerâmicas de Al ₂ O ₃ -Y ₂ O ₃ -Ta ₂ O ₅ e pseudo-binárias	38
Figura 13 -	Forno utilizado para o tratamento térmico adicional de 150 h	
	das cerâmicas de Al ₂ O ₃ -Y ₂ O ₃ -Ta ₂ O ₅ e pseudo-binárias	39
Figura 14 -	Difratômetro de raios X utilizado neste estudo	40
Figura 15 -	Detalhe do goniômetro no interior do difratômetro de raios X	40
Figura 16 -	Microscópio eletrônico de varredura Hitachi TM-3000 com	
	detector de EDS	42
Figura 17 -	Detalhe porta amostras	42
Figura 18 -	Difratograma de raios X da amostra 1 após o tratamento	
	térmico à 1300°C por 72h	45
Figura 19 -	Difratograma de raios X da amostra 1 tratada termicamente à	
	1300°C por 222 h	46

Figura 20 -	Imagem de MEV da amostra 1 tratada termicamente à 1300°C por 222 h	47
Figura 21 -	Difratograma de raios X da amostra 2 após o tratamento térmico à 1300°C por 72h	49
Figura 22 -	Difratograma de raios X da amostra 2 tratada termicamente à 1300°C por 222 h	49
Figura 23 -	Imagem de MEV da amostra 2 tratada termicamente à 1300°C por 222 h	50
Figura 24 -	Difratograma de raios X da amostra 3 após o tratamento térmico à 1300°C por 72h	52
Figura 25 -	Difratograma de raios X da amostra 3 tratada termicamente à 1300°C por 222 h	52
Figura 26 -	Imagem de MEV da amostra 3 tratada termicamente à 1300°C por 222 h	53
Figura 27 -	Difratograma de raios X da amostra 4 após o tratamento térmico à 1300°C por 72h	56
Figura 28 -	Difratograma de raios X da amostra 4 tratada termicamente à 1300°C por 222 h	56
Figura 29 -	Imagem de MEV da amostra 4 tratada termicamente à 1300°C por 222 h	57
Figura 30 -	Difratograma de raios X da amostra 5 após o tratamento térmico à 1300°C por 72h	59
Figura 31 -		59
Figura 32 -	Imagem de MEV da amostra 5 tratada termicamente à 1300°C por 222 h	60
Figura 33 -	Difratograma de raios X da amostra 6 após o tratamento térmico à 1300°C por 72h	62
Figura 34 -	Difratograma de raios X da amostra 6 tratada termicamente à	
Figura 35 -	1300°C por 222 h Imagem de MEV da amostra 6 tratada termicamente à 1300°C por 222 h	62 63

Figura 36 -	Difratograma de raios X da amostra 7 após o tratamento	
	térmico à 1300°C por 72h	65
Figura 37 -	Difratograma de raios X da amostra 7 tratada termicamente à	
	1300°C por 222 h	65
Figura 38 -	Imagem de MEV da amostra 7 tratada termicamente à 1300°C	
	por 222 h	66
Figura 39 -	Difratograma de raios X da amostra 8 após o tratamento	
	térmico à 1300°C por 72h	68
Figura 40 -	Difratograma de raios X da amostra 8 tratada termicamente à	
	1300°C por 222 h	68
Figura 41 -	Imagem de MEV da amostra 8 tratada termicamente à 1300°C	
	por 222 h	69
Figura 42 -	Difratograma de raios X da amostra 9 após o tratamento	
	térmico à 1300°C por 72h	71
Figura 43 -	Difratograma de raios X da amostra 9 tratada termicamente à	
	1300°C por 222 h	72
Figura 44 -	Imagem de MEV da amostra 9 tratada termicamente à 1300°C	
	por 222 h	72

LISTA DE TABELAS

Tabela 1 -	Composição química e estruturas formadas em cerâmicas do	
	sistema Al ₂ O ₃ -Y ₂ O ₃ após solidificação e subsequente	
	tratamento térmico em diferentes temperaturas	26
Tabela 2 -	Características químicas das cerâmicas	32
Tabela 3 -	Quantidade relativa das fases esperadas para cada amostra	
	de Al_2O_3 - Ta_2O_5 - Y_2O_3 (e pseudo-binárias) de acordo com a	
	seção térmica proposta inicialmente	35
Tabela 4 -	Composições químicas em %-massa das cerâmicas de Al ₂ O ₃ -	
	Y ₂ O ₃ -Ta ₂ O ₅ e pseudo-binárias avaliadas neste estudo	36
Tabela 5 -	Massas (g) de Al_2O_3 , Y_2O_3 e Ta_2O_5 utilizadas para a	
	preparação de 1,5 g das cerâmicas de Al ₂ O ₃ -Y ₂ O ₃ -Ta ₂ O ₅ e	
	pseudo-binárias avaliadas neste estudo	36
Tabela 6 -	Teores elementares (%-at.) das possíveis fases presentes em	
	cerâmicas de Al ₂ O ₃ -Y ₂ O ₃ -Ta ₂ O ₅	44
Tabela 7 -	Resultados de EDS (%-at.) das fases presentes na amostra 1	
	tratada termicamente à 1300°C por 222 h	47
Tabela 8 -	Dados cristalográficos das fases presentes na amostra 1	
	tratada termicamente à 1300°C por 222 h	48
Tabela 9 -	Resultados de EDS (%-at.) da amostra 2 tratada termicamente	
	à 1300°C por 222 h	51
Tabela 10 -	Dados cristalográficos para a amostra 2 tratada termicamente	
	à 1300°C por 222 h	51
Tabela 11 -	Resultados de EDS (%-at.) das fases presentes na amostra 3	
	tratada termicamente à 1300°C por 222 h	54
Tabela 12 -	Dados cristalográficos das fases presentes na amostra 3	
	tratada termicamente à 1300°C por 222 h	54
Tabela 13 -	Resultados de EDS (%-at.) das fases presentes na amostra 4	
	tratada termicamente à 1300°C por 222 h	57
Tabela 14 -	Dados cristalográficos das fases presentes na amostra 4	
	tratada termicamente à 1300°C por 222 h	58

Tabela 15 -	Resultados de EDS (%-at.) das fases presentes na amostra 5	
	tratada termicamente à 1300°C por 222 h	60
Tabela 16 -	Dados cristalográficos das fases presentes na amostra 5	
	tratada termicamente à 1300°C por 222 h	61
Tabela 17 -	Resultados de EDS (%-at.) das fases presentes na amostra 6	
	tratada termicamente à 1300°C por 222 h	63
Tabela 18 -	Dados cristalográficos das fases presentes na amostra 6	
	tratada termicamente à 1300°C por 222 h	64
Tabela 19 -	Resultados obtidos por EDS para amostra 7 tratada	
	termicamente à 1300°C por 222 h	66
Tabela 20 -	Dados cristalográficos das fases presentes na amostra 7	
	tratada termicamente à 1300°C por 222 h	67
Tabela 21 -	Resultados de EDS (%-at.) das fases presentes na amostra 8	
	tratada termicamente à 1300°C por 222 h	70
Tabela 22 -	Dados cristalográficos das fases presentes na amostra 8	
	tratada termicamente à 1300°C por 222 h	70
Tabela 23 -	Resultados de EDS (%-at.) da amostra 9 tratada termicamente	
	à 1300°C por 222 h	73
Tabela 24 -	Dados cristalográficos das fases presentes na amostra 9	
	tratada termicamente à 1300°C por 222 h	73

LISTA DE ABREVIATURAS E SIGLAS

°C Graus Celsius

Al Alumínio

d Distância entre planos de rede

DEMAR Departamento de Engenharia de Materiais

DRX Difratometria de raios X

EDS Espectroscopia de Energia Dispersiva

EEL Escola de Engenharia de Lorena

g Gramas

ICT Instituto de Ciência e Tecnologia

kgf Quilograma força

MEV Microscopia eletrônica de varredura

min Minuto

mm Milímetro

mol Molar

O Oxigênio

Pa Pascal

MPa Mega Pascal

Ta Tântalo

Y Ítrio

WC-Co Carbeto de Tungstênio - Cobalto

Θ Ângulo de difração

SUMÁRIO

1	INTRODUÇÃO	18
2	OBJETIVOS	21
2.1	OBJETIVO GERAL	21
2.2	OBJETIVOS ESPECÍFICOS	21
3	REVISÃO BIBLIOGRÁFICA	22
3.1	ÓXIDO DE ALUMÍNIO (Al ₂ O ₃)	22
3.2	ÓXIDO DE ÍTRIO (Y ₂ O ₃)	
3.3	PENTÓXIDO DE TÂNTALO (Ta ₂ O ₅)	23
3.4	DIAGRAMA DE FASES DO SISTEMA Al ₂ O ₃ -Y ₂ O ₃	24
3.5	DIAGRAMA DE FASES DO SISTEMA Al ₂ O ₃ -Ta ₂ O ₅	28
3.6	DIAGRAMA DE FASES DO SISTEMA Y ₂ O ₃ -Ta ₂ O ₅	29
3.7	DIAGRAMA DE FASES DO SISTEMA Al ₂ O ₃ -Y ₂ O ₃ -Ta ₂ O ₅	31
4	MATERIAIS E MÉTODOS	32
4.1	DETERMINAÇÕES DAS COMPOSIÇÕES	32
4.2	PROCESSAMENTO	37
4.3	CARACTERIZAÇÕES	39
5	RESULTADOS E DISCUSSÕES	45
5.1	AMOSTRA 1 (11,11Al ₂ O ₃ - 8,33Ta ₂ O ₅ - 80,56Y ₂ O ₃ %-molar)	45
5.2	AMOSTRA 2 (11,11Al ₂ O ₃ – 25,00Ta ₂ O ₅ - 63,89Y ₂ O ₃ %-molar)	49
5.3	AMOSTRA 3 (27,78Al ₂ O ₃ - 16,67Ta ₂ O ₅ - 55,56Y ₂ O ₃ %-molar)	52
5.4	AMOSTRA 4 (33,33Al ₂ O ₃ - 33,33Ta ₂ O ₅ - 33,33Y ₂ O ₃ %-molar)	56
5.5	AMOSTRA 5 (16,67Al ₂ O ₃ - 58,33Ta ₂ O ₅ - 25,00Y ₂ O ₃ %-molar)	59
5.6	AMOSTRA 6 (16,67Al ₂ O ₃ – 70,23Ta ₂ O ₅ – 13,10Y ₂ O ₃ %-molar)	62
5.7	AMOSTRA 7 (16,67Al ₂ O ₃ - 78,57Ta ₂ O ₅ - 4,76Y ₂ O ₃ %-molar)	65
5.8	AMOSTRA 8 (54,16Al ₂ O ₃ - 16,67Ta ₂ O ₅ - 29,17Y ₂ O ₃ %-molar)	68

5.9	AMOSTRA 9 (70,83Al ₂ O ₃ - 16,67Ta ₂ O ₅ - 25,00Y ₂ O ₃ %-molar)	71
6	CONCLUSÕES	75
7	SUGESTÕES PARA TRABALHOS FUTUROS	76
REFE	RÊNCIAS	77

1 INTRODUÇÃO

Todos os passos da vida do ser humano são influenciados pelos materiais, sendo em algumas áreas de maior ou menor atuação, e a evolução da sociedade está ligada ao potencial de produzir ou transformar materiais para que estes supram suas necessidades. Inicialmente, esses materiais eram limitados aos que ocorriam naturalmente, como argila ou pedra, por exemplo. Com a descoberta de novas técnicas, tornou-se possível ter novos materiais disponíveis, com propriedades superiores, os quais abrangiam cerâmicas e alguns metais. Além disso, observou-se que as propriedades de um material poderiam sofrer alterações através da adição de novas composições e do tratamento térmico, possibilitando que um material tivesse uma aplicação específica de acordo com suas características, tornando-se um processo de seleção. Através do conhecimento acumulado ao longo dos anos, temos condições de moldar e adquirir as propriedades de um material de forma a atender às necessidades da sociedade nas mais diversas áreas, como metais, vidros, fibras ou plásticos.

A busca pelo desenvolvimento nos campos científicos e/ou tecnológicos é um desafio incessante, sempre se busca aperfeiçoar as propriedades dos materiais. Para as áreas de tecnologia e indústria, os óxidos de alumínio (Al₂O₃) e ítrio (Y₂O₃), assim como o pentóxido de tântalo (Ta₂O₅), são conhecidos devido às suas propriedades, como alto ponto de fusão e algumas características específicas que os tornam interessantes.

O óxido de alumínio (Al₂O₃) pode existir tanto na fase estável quanto na fase metaestável, onde suas propriedades físicas e químicas estão associadas ao método de obtenção realizado. Em relação às suas propriedades, além da dureza, o óxido de alumínio possui alta refratariedade, estabilidade química e resistência à corrosão. Sua síntese pode ocorrer por meio de alguns métodos químicos, o que auxilia no controle das características desejáveis do material, tanto física quanto quimicamente. Para ser sintetizado, é necessário atingir altas temperaturas devido ao seu alto ponto de fusão, e para amenizar esse efeito, podem-se utilizar aditivos durante o processo (AUERKARI, 1996). Esse óxido possui uma ampla variedade de produtos e aplicações, podendo ser utilizado na indústria química, como catalisador, no tratamento de água e esgoto, em pastas de dente e cosméticos. Além disso, é

aplicado na indústria eletrônica, sendo utilizado em velas de ignição e como isolante elétrico.

O óxido de ítrio (Y₂O₃) possui propriedades que o tornam interessante para aplicação na ciência biotecnológica. Também apresenta estabilidade química, alto ponto de fusão e resistência à corrosão. Sua aplicação no campo tecnológico se deve principalmente à baixa influência nos efeitos do campo ligante e do ambiente químico, decorrente da ausência de níveis eletrônicos em sua região do ultravioleta ao infravermelho (SHEN, 2013).

O pentóxido de tântalo (Ta₂O₅) tem chamado bastante atenção devido às suas propriedades químicas, catalíticas e ópticas, o que possibilita aplicações no campo tecnológico. Assim como o óxido de alumínio (Al₂O₃) e o óxido de ítrio (Y₂O₃), ele também possui alto ponto de fusão, o que o torna um material refratário e quimicamente inerte (MAKOVECA, 2006).

Microestruturas se desenvolvem quando ocorre a transformação de fases, a qual é desencadeada pela alteração da temperatura. Isso pode resultar na transição de uma fase para outra, assim como no surgimento ou desaparecimento delas.

Para compreender a aplicação de um material em altas temperaturas, é necessário analisar sua estabilidade de fases. Um sistema está em equilíbrio quando sua energia livre atinge um valor mínimo para uma combinação específica de temperatura, pressão e composição. Isso significa que as características do material não mudam com o tempo, mas permanecem constantes, indicando que ele está estável. As informações sobre a microestrutura de um sistema são apresentadas através do diagrama de fases, uma ferramenta importante para prever transformações de fases.

O diagrama de fases desempenha um papel fundamental na engenharia, fornecendo informações sobre o comportamento dos materiais em diferentes condições. Existem várias razões para seu uso, tais como compreender as transições de fases, identificar as condições ideais de temperatura e pressão para alcançar uma determinada fase ou evitar transformações indesejadas. Isso é relevante em processos de separação, destilação, cristalização, entre outros. Além disso, o diagrama orienta a garantia de qualidade e consistência dos materiais produzidos. Em resumo, ele desempenha um papel fundamental em diversos controles e análises, permitindo compreender e manipular o comportamento dos materiais em diferentes composições termodinâmicas, o que possibilita tomadas de decisões e otimizações

de suas aplicações. No entanto, não foram encontradas informações na literatura sobre a estabilidade de fases do sistema $Al_2O_3-Y_2O_3-Ta_2O_5$.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Neste contexto, este estudo tem como objetivo a investigação da estabilidade de fases a 1300°C de cerâmicas do sistema pseudo-ternário Al₂O₃-Y₂O₃-Ta₂O₅.

2.2 OBJETIVOS ESPECÍFICOS

Para o desenvolvimento do presente estudo, tem-se os seguintes objetivos específicos:

- a) Selecionar algumas composições químicas de cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅, que possam representar regiões bifásicas ou trifásicas;
- b) Obter microestruturas homogêneas de cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅, a partir dos parâmetros adotados durante as etapas de homogeneização, prensagem e tratamento térmico após 72 h e 222 h;
- c) Identificar as fases presentes em cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ tratadas à 1300°C por 72 horas e 222 h, com o auxílio de técnicas de difratometria de raios X, microscopia eletrônica de varredura e espectrometria por dispersão de energia;

3 REVISÃO BIBLIOGRÁFICA

Os estudos relacionados à determinação de diagramas de fases têm contribuído para a identificação de novas fases (ou compostos) que possibilitam o desenvolvimento de novos materiais. Óxidos simples e complexos encontram vastos campos de aplicação em muitos ramos da indústria. Para a determinação de uma seção isotérmica de um sistema ternário, como é o caso do sistema Al₂O₃-Y₂O₃-Ta₂O₅, as informações provenientes de seus sistemas binários correspondentes são importantes.

3.1 ÓXIDO DE ALUMÍNIO (Al₂O₃)

Dentre as cerâmicas consideradas avançadas, o óxido de alumínio (Al₂O₃) é uma das mais utilizadas devido ao seu bom desempenho em relação a resistência de uso, a alta dureza e a resistência a corrosão e um bom custo-benefício. Além de apresentar uma boa combinação com as propriedades, elétricas ou mecânicas, podendo ter diferentes aplicações. Este óxido ainda pode ser produzido com vários graus de purezas podendo formar outros compostos, o que se pode aprimorar suas propriedades de modo geral.

A alumina possui diversas configurações cristalográficas e, na presença de água ou umidade, pode dar origem a diferentes tipos de óxidos hidratados ou hidróxidos, a depender das circunstâncias (RODRIGUEZ, 2003). Podem ainda existir várias fases cristalográficas distintas, caracterizadas por isômeros diferentes e esses compostos podem ser encontrados tanto em estruturas cristalinas quanto amorfas.

O óxido de alumínio (Al₂O₃) apresenta diferentes estruturas cristalinas dependendo das condições de síntese e temperatura. As duas estruturas cristalinas mais comuns do óxido de alumínio são: Coríndon (α-Al₂O₃): É a forma mais estável do óxido de alumínio à temperatura ambiente. A estrutura cristalina do coríndon é do tipo rômbica, com um arranjo hexagonal compacto dos átomos de oxigênio e átomos de alumínio ocupando octaedros intersticiais. Possui uma alta dureza e é utilizado em aplicações como abrasivos, cerâmicas e revestimentos protetores. A alumina gama (γ-Al₂O₃) é uma forma metaestável do óxido de alumínio que se forma em altas temperaturas (maior a 1200°C) e pressões. A estrutura cristalina do γ-Al₂O₃ é cúbica, com um empilhamento desordenado de camadas de octaedros de alumínio e átomos

de oxigênio. Essa estrutura oferece uma maior área de superfície específica e é utilizada em catalisadores, suportes catalíticos, pigmentos e como material de enchimento. Além dessas estruturas, o óxido de alumínio pode apresentar outras fases cristalinas, como a fase delta (δ-Al₂O₃) e a fase épsilon (ε-Al₂O₃), que são menos comuns e estão associadas a condições específicas de síntese e temperaturas elevadas (DIGNE *et al.*, 2002).

3.2 ÓXIDO DE ÍTRIO (Y₂O₃)

O óxido de ítrio (Y₂O₃) é gerado pelo processamento de minérios onde há grande quantidade de elementos lantanídeos, estes elementos são os conhecidos terras raras. Nos últimos anos este elemento vem ganhando espaço na tecnologia com suas aplicações, isto é, devido a sua adequação nos processos de purificação de óxidos cerâmicos, assim como suas propriedades químicas e físicas como a estrutura cristalina cúbica, alto valor de refração, condutividade térmica no seu estado de pureza e ponto de fusão.

Do ponto de vista estrutural, o óxido de ítrio possui uma estrutura cristalina cúbica. A disposição dos átomos de ítrio e oxigênio na rede cristalina contribui para suas propriedades físicas e químicas, como alta estabilidade térmica e condutividade iônica (ZUEV, 2000).

3.3 PENTÓXIDO DE TÂNTALO (Ta₂O₅)

As propriedades do pentóxido de tântalo (Ta₂O₅) dependem do seu grau de pureza, que está relacionado com a presença de carbono, oxigênio e nitrogênio que, até em pequenas concentrações, causam mudanças em suas propriedades.

Do ponto de vista estrutural, o óxido de tântalo possui uma estrutura cristalina na fase ortorrômbica. Consiste em átomos de tântalo e oxigênio organizados em uma rede cristalina, com parâmetros de rede específicos. Essa estrutura cristalina contribui para suas propriedades físicas e químicas (NAMUR, 2014).

Além do pentóxido de tântalo, outros óxidos de tântalo podem ser formados, como o monóxido de tântalo (TaO) e o dióxido de tântalo (TaO₂), dependendo das condições de síntese e temperatura.

Em resumo, o óxido de tântalo (Ta₂O₅) é um composto químico importante, amplamente utilizado em aplicações eletrônicas e como revestimento protetor devido às suas propriedades elétricas, resistência à corrosão e estrutura cristalina característica. É um material essencial na indústria de dispositivos eletrônicos de alta tecnologia (DIGNE *et al.*, 2002).

3.4 DIAGRAMA DE FASES DO SISTEMA Al₂O₃-Y₂O₃

As seguintes fases sólidas estáveis estão presentes no diagrama de fases parcial do sistema Al₂O₃-Y₂O₃, conforme está mostrado na figura 1: Al₂O₃, Y₃Al₅O₁₂ (YAG), YAlO₃ (YAP) e Y₂O₃ (SEPULVEDA, 1997).

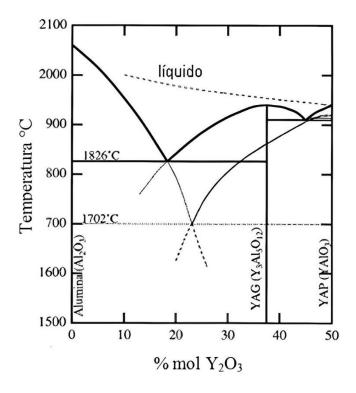


Figura 1 - Diagrama de fases Al₂O₃-Y₂O₃

Fonte: Sepulveda (1997, p. 3022).

Na figura 1, as linhas contínuas representam as regiões com resultados considerados corretos como, por exemplo, na reação eutética à 1826°C envolvendo as fases Al₂O₃ e YAG, enquanto as linhas pontilhadas representam o patamar eutético à 1702°C entre as fases Al₂O₃ e YAP, apontando alguma incerteza (SEPULVEDA, 1997). Dessa forma, em seu estudo, Sepulveda (1997) reportou sobre a possibilidade da existência da fase YAG metaestável, que se decompõe em baixas temperaturas. Em seu estudo, Sepulveda (1997) ainda confirmou a existência das fases sólidas

intermediárias: Y₃Al₅O₁₂ (YAG), YAlO₃ (YAP) e Y₄Al₂O₉ (YAM), que são formadas por transformações congruentes.

No estudo de Abell (1974), relatou-se a existência de três fases intermediárias no sistema Al₂O₃-Y₂O₃: YAG, YAP e YAM, conforme ilustrado na figura 2, que são formadas por transformações congruentes para as relações molares Y₂O₃:Al₂O₃ de 3:5 (YAG), 1:1 (YAP) e 2:1 (YAM), respectivamente. Além disso, houve relatos que a fase YAG possui uma estrutura cúbica de face centrada e é a única fase estável do sistema, enquanto o YAP é uma fase metaestável. Além disso, como descrito por Toropov (1969), o YAP é formado a partir de uma fração molar de Y₂O₃:Al₂O₃ de 2:1 e se torna líquido a 1875°C, além de possuir uma faixa de estabilidade onde é decomposto em YAM e YAG, ocorrendo em aproximadamente 1835°C. Neste trabalho, foi proposto um diagrama de fases para o sistema pseudo-binário Y₂O₃-Al₂O₃ contendo um composto intermediário estável, YAG, e duas fases metaestáveis, YAP e YAM (ABELL *et al.*, 1974).

A Tabela 1 mostra as composições químicas e as estruturas cristalinas formadas após solidificação e subsequente tratamento térmico em diferentes temperaturas. Assim, foram confirmadas as regiões monofásicas e bifásicas (Al₂O₃+YAG, YAG+YAP, YAP+YAM e YAM+Y₂O₃).

Tabela 1 - Composição química e estruturas formadas em cerâmicas do sistema Al₂O₃-Y₂O₃ após solidificação e subsequente tratamento térmico em diferentes temperaturas

	Fases à temperatura ambiente				
Composição Y₂O₃-Al₂O₃		Triturado	Depois do recozimento	Condições do recozimento	Temperatura de estabilidade e fases
YAG	37,5 : 62,5	YAG	YAG	2h, 1600°C	YAG - 1500°C
1	45 : 55	YAG + YAP	YAG + X + YAP (4 linhas)	2h, 1600°C	YAG + YAP 1380°C
YAP	50 : 50	YAP	YAG + X + YAP	2h, 1600°C	YAP + YAG + (X) 1500°C
2	55 : 45	YAP + YAM	YAP + YAM + YAG (3 linhas)	2h, 1600°C	YÁP + YAM 1460°C
3	60 : 40	YAM + YAP	YAM + YAP + YAG (1 linha)	2h, 1600°C	YAM + YAP 1500°C
4	65 : 35	YAM + YAP	YAM + YAP + YAG (1 linha)	2h, 1600°C	YAM + YAP + YAG 1510°C
YAM	66,7 : 33,3	YAM	YAM + YAG + X (1 linha)	2h, 1600°C	YAM + YAG 1500°C
5	70 : 30	$YAM + Y_2O_3$	YAM	19h, 1500°C	YAM + Y ₂ O ₃ 1425°C
6	75 : 25	$YAM + Y_2O_3$	YAM + Y ₂ O ₃	19h, 1500°C	YAM + Y ₂ O3 1525°C

Fonte: Adaptado de Abell (1974, p. 530).

Em estudos realizados por Mizuno (1967), conclui-se que um composto com fusão congruente se torna estável a 1600°C. Porém, a metaestabilidade desta fase em pós foi confirmada em estudos de difratometria de raios X, com uma decomposição térmica ocorrendo para temperaturas superiores a 1300°C.

No trabalho de Jiang *et al.* (2016), somente a fase YAP foi confirmada após aquecimento ao ar a 1700°C por 2 h, de misturas de pós de Y₂O₃:Al₂O₃ de 1:1. A fase YAP se tornou estável à 1450°C, onde nenhuma transformação de fase ocorreu após aquecimento à 1450°C por 5 h. A figura 2 mostra o diagrama de fases proposto por Abell (1974), na figura temos indicado os pontos de 1 a 6 que representam as composições deste estudo (descritas na tabela 1).

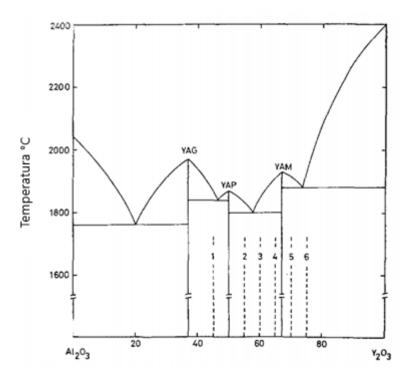


Figura 2 - Diagrama de Fases do sistema Al₂O₃-Y₂O₃

Fonte: Abell (1974, p. 530).

Em estudos envolvendo misturas de pós de Al_2O_3 - Y_2O_3 -SiC (JIANG *et al.*, 2016), as fases YAM, YAP e YAG, foram reladas em equilíbrio com as fases terminais de Al_2O_3 , Y_2O_3 e/ou SiC, conforme está ilustrado na figura 3.

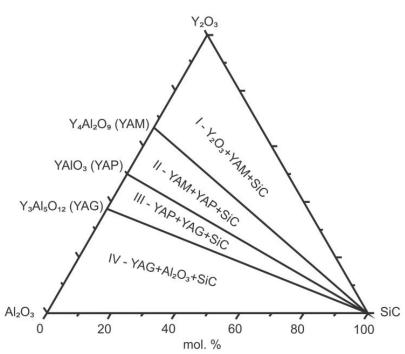


Figura 3 - Diagrama de Fases do sistema Al₂O₃-Y₂O₃-SiC

Fonte: Jiang (2016, p. 25).

3.5 DIAGRAMA DE FASES DO SISTEMA Al₂O₃-Ta₂O₅

A figura 4 mostra uma ilustração representativa do sistema Al₂O₃-Ta₂O₅. As seguintes fases sólidas foram relatadas neste estudo: Al₂O₃ e Ta₂O₅. Além disso, notou-se que ocorre a formação da fase sólida quando a temperatura é superior a 1600°C, e quando a temperatura do sistema está abaixo, os dois óxidos precursores podem ser formados, dependendo da composição adotada (TONELLO, 2013).

Figura 4 - Representação esquemática de fases de Al₂O₃-Ta₂O₅

Fonte: Adaptado de Tonello (2013, p. 73).

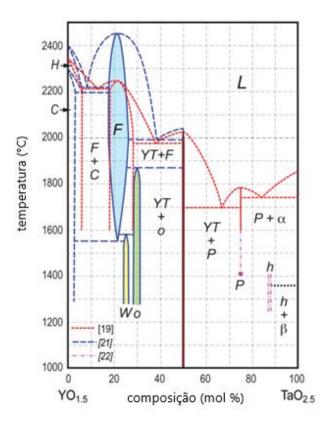
Nestes estudos, análises das microestruturas contribuíram para a identificação de fases, tendo em vista a limitação inerente da técnica de difratometria de raios X. A micrografia da figura 5 mostra regiões que foram relacionadas com a fase sólida, além da presença de óxido de tântalo nos contornos de grãos da alumina.

Ta:Os

Ta:Os

NL 10 um

Figura 5 - Micrografia da superfície após polimento da amostra da fase Al₂O₃-Ta₂O₅


Fonte: Adaptado de Tonello (2013, p. 74).

De acordo com Zuev (2000), em cerâmicas do sistema Al₂O₃-Ta₂O₅, o aquecimento com diferentes composições sob várias temperaturas e tempos foi necessário para que as reações pudessem acontecer, para atingir a estabilidade de fases entre 1300°C e 1350°C, enquanto para algumas amostras que foram aquecidas até 1450°C não foram notadas mudanças significativas na relação das fases.

3.6 DIAGRAMA DE FASES DO SISTEMA Y₂O₃-Ta₂O₅

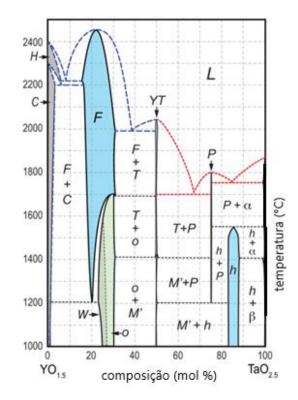

As figuras 6 e 7 mostram diagramas de fases do sistema Y_2O_3 - Ta_2O_5 , relatados por Yokogawa (1997) e Vasil'ev (1979), respectivamente. De acordo com os resultados de Vasil'ev, a solubilidade de Ta_2O_5 no Y_2O_3 é próximo de 5%-mol, enquanto de 1,5%-mol de Y_2O_3 no Ta_2O_5 .

Figura 6 - Diagrama de fases do sistema Y_2O_3 - Ta_2O_5

Fonte: Vasil'ev (1979, p. 55).

Figura 7 - Diagrama de fases do sistema Y₂O₃-Ta₂O₅

Fonte: Vasil'ev (1979, p. 55).

Os estudos mostraram que existe uma região com menor temperatura de fusão localizada em patamar eutético (formado pelas fases denominadas como YT e P) de 1700°C e com composição eutética para cerâmicas contendo cerca de 67%-molar de Ta₂O₅ (BONDAR, 1973). Em ambos os diagramas de fases propostos, a fase YT (YTaO₄) é estequiométrica, enquanto as fases F e P são estáveis; ou seja, se decompõem em baixas temperaturas.

Ainda de acordo com estudos de Yokosawa (1997), as composições binárias de Y₂O₃-Ta₂O₅ que foram sinterizadas a partir de pós precursores, atingiram as condições de equilíbrio entre 1250°C a 1600°C mediante tratamentos térmicos realizados com o tempo variando entre 48 à 400 h. A existência da fase F e sua região de solubilidade foi determinada a partir de investigações das composições de 72Y₂O₃-28Ta₂O₅ e 75Y₂O₃-25Ta₂O₅ (%-molar).

3.7 DIAGRAMA DE FASES DO SISTEMA Al₂O₃-Y₂O₃-Ta₂O₅

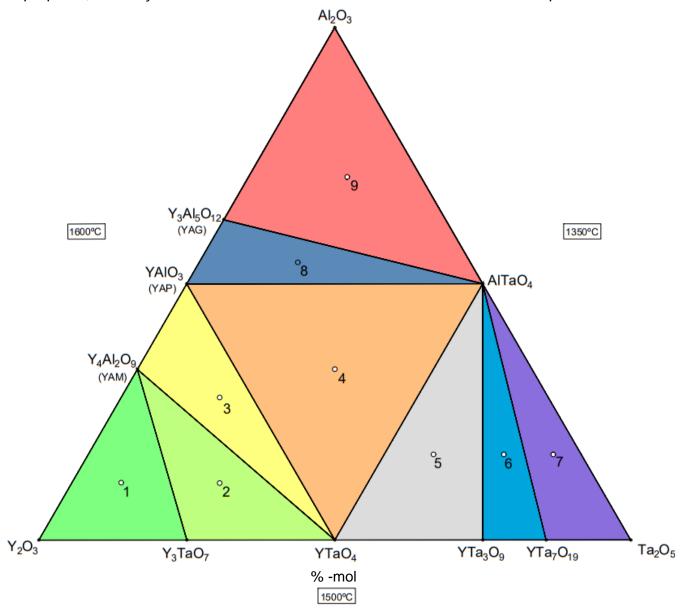
Não foram encontradas na literatura informações sobre as transformações de fases de cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅. Dessa forma, o presente projeto de pesquisa visa a determinação da estabilidade de fases à 1300°C deste sistema pseudo-ternário.

4 MATERIAIS E MÉTODOS

4.1 DETERMINAÇÕES DAS COMPOSIÇÕES

Para a preparação das cerâmicas de Al_2O_3 - Y_2O_3 - Ta_2O_5 , foram utilizadas matérias-primas de alumina (Al_2O_3) e o óxido de ítrio (Y_2O_3) fornecidas pela Sigma Aldrich, enquanto o óxido de tântalo (Ta_2O_5) foi fornecido pela AMG-Brasil. As características químicas das matérias-primas estão apresentadas na Tabela 2, exceto para o Ta_2O_5 que não foram encontradas e disponibilizadas pelo fornecedor.

Tabela 2 - Características químicas das cerâmicas


Elemento	Composição química (%)	Área específica de superfície (m²/g)	Densidade (g/cm³)
Y ₂ O ₃	99,9	12,80	5,01
Al ₂ O ₃ Ta ₂ O ₅	99,8	7,80 -	3,98 -

Fonte: Autor, 2023.

Com base nas informações dos sistemas binários Al₂O₃-Y₂O₃, Al₂O₃-Ta₂O₅ e Y₂O₃-Ta₂O₅ a 1300°C, foram consideradas as seguintes fases para a seção isotérmica: Al₂O₃-α, Y₃Al₅O₁₂ (YAG), YAIO₃ (YAP), Y₄Al₂O₉ (YAM), Y₂O₃, Y₃TaO₇, YTaO₄, YTa₃O₉, YTa₇O₁₉, Ta₂O₅ e AlTaO₄. A figura 8 apresenta a seção isotérmica proposta inicialmente, onde as regiões triangulares representam regiões trifásicas e as linhas representam possíveis campos bifásicos. Neste diagrama de fases, os pontos de 1 a 9 foram posicionados no centro de cada região trifásica e representam as composições químicas adotadas neste estudo para investigação. Essas composições foram escolhidas de forma a permitir a formação significativa de cada fase, facilitando assim sua identificação na microestrutura das cerâmicas. Neste contexto, a figura 9 mostra a seção isotérmica a 1300°C do sistema Al₂O₃-Y₂O₃-Ta₂O₅, contendo as distâncias relativas das composições químicas adotadas para cada amostra, em cada região trifásica, com uma quantidade relativa de fases de 33,33% molar.

Diante da limitação de informações na literatura, as amostras de 10 a 14 também foram investigadas. Essas amostras estão relacionadas com cerâmicas dos diagramas pseudo-binários que compõem o diagrama de fases pseudo-ternário em estudo.

Figura 8 - Seção isotérmica à 1300°C do sistema Al₂O₃-Y₂O₃-Ta₂O₅, inicialmente proposta, em função das fases consideradas dos sistemas binários correspondentes

Fonte: Autor, 2023.

 Al_2O_3 1,1024 $Y_3AI_5O_{12}$ 1600°C (YAG) 1350°C 1,4434 0,9547 1,5729 80,72, 1,9094 3,1458 YAIO₃ AlTaO₄ 2,8868 2,8868 - Jakob Y₄Al₂O₉ 1,4699 1,4434 0,8448 Y_2O_3 Ta_2O_5 YTa₃O₉ Y_3TaO_7 YTaO₄ YTa₇O₁₉ 1500℃

Figura 9 - Diagrama de fases do sistema pseudo-ternário proposta para o sistema Al₂O₃-Ta₂O₅-Y₂O₃, com cotas

Fonte: Autor, 2023.

A Tabela 3 apresenta a quantidade relativa dos pós precursores de Al₂O₃, Y₂O₃ e Ta₂O₅ utilizados para a preparação de cada amostra de Al₂O₃-Y₂O₃-Ta₂O₅ (%-molar), bem como as fases esperadas com base nesta seção isotérmica inicialmente proposta.

As Tabelas 4 e 5 mostram as porcentagens em peso e as massas dos pós precursores de Al_2O_3 , Y_2O_3 e Ta_2O_5 utilizados para a preparação de 1,5 g de cada amostra de Al_2O_3 - Y_2O_3 - Ta_2O_5 (%-molar) e das cerâmicas pseudo-binárias, respectivamente.

Tabela 3 - Quantidade relativa das fases esperadas para cada amostra de Al₂O₃-Ta₂O₅-Y₂O₃ (e pseudo-binárias) de acordo com a seção térmica proposta inicialmente

Composição	Composição química (% molar)	Fases propostas
	Al ₂ O ₃ (11,1111%)	
1	Ta ₂ O ₅ (8,3333%)	$Y_2O_3\text{-}Y_4AI_2O_9\text{-}Y_2TaO_7$
	Y ₂ O ₃ (80,5556%)	
	Al ₂ O ₃ (11,1111%)	
2	Ta ₂ O ₅ (25,0000%)	$Y_4AI_2O_9$ - Y_3TaO_7 - $YTaO_4$
	Y ₂ O ₃ (63,8889%)	
	Al ₂ O ₃ (27,7778%)	
3	Ta ₂ O ₅ (16,6667%)	$Y_4AI_2O_9$ - $YAIO_3$ - $YTaO_4$
	Y ₂ O ₃ (55,5556%)	
	Al ₂ O ₃ (33,3333%)	
4	Ta ₂ O ₅ (33,3333%)	YAIO3-AITaO4-YTaO4
	Y ₂ O ₃ (33,3333%)	
	Al ₂ O ₃ (16,6667%)	
5	Ta ₂ O ₅ (58,3333%)	YTaO ₄ -AlTaO ₄ -YTa ₃ O ₉
	Y ₂ O ₃ (25,0000%)	
	Al ₂ O ₃ (16,6667%)	
6	Ta ₂ O ₅ (70,2381%)	AlTaO ₄ -YTa ₃ O ₉ -YTa ₇ O ₁₉
	Y ₂ O ₃ (13,0952%)	
	Al ₂ O ₃ (16,6667%)	
7	Ta ₂ O ₅ (78,5714%)	AlTaO ₄ -YTa ₇ O ₁₉ -Ta ₂ O ₅
	Y ₂ O ₃ (4,7619%)	
	Al ₂ O ₃ (54,1667%)	
8	Ta ₂ O ₅ (16,6667%)	YAIO3-Y3AI5O12-AITaO4
-	Y ₂ O ₃ (29,16667%)	
	Al ₂ O ₃ (70,8333%)	
9	Ta ₂ O ₅ (16,6667%)	Y ₃ Al ₅ O ₁₂ -AlTaO ₄ -Al ₂ O ₃
	Y ₂ O ₃ (12,5000%)	
	Al ₂ O ₃ (37,5000%)	
10	Ta ₂ O ₅ (16,6667%)	YAIO3-YTaO4-YAIO4
	Y ₂ O ₃ (45,8333%)	
	Al ₂ O ₃ (33,3333%)	
11	Ta ₂ O ₅ (41,6667%)	YAIO ₃ -YTaO ₄ -YAIO ₄
• •	Y ₂ O ₃ (25,0000%)	
	Al ₂ O ₃ (50,0000%)	
12	Ta ₂ O ₅ (41,6667%)	AlTaO ₄ -YAlO ₃
12	Y ₂ O ₃ (8,3333%)	
	Al ₂ O ₃ (25,0000%)	
13	Ta ₂ O ₅ (75,0000%)	AlTaO ₄ -Ta ₂ O ₅
.0	Y ₂ O ₃ (0,0000%)	
	Al ₂ O ₃ (75,0000%)	
14	Ta ₂ O ₅ (25,0000%)	Al ₂ O ₃ -AlTaO4
ידו	Y ₂ O ₃ (0,0000%)	, 11200 / 11 1 UOT

Fonte: Autor, 2023.

Tabela 4 - Composições químicas em %-massa das cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ e pseudo-binárias avaliadas neste estudo

Amostra	Al ₂ O ₃	Ta₂O₅	Y ₂ O ₃	TOTAL
1	4,9243	16,0063	79,0693	100,0000
2	4,2578	41,5198	54,2224	100,0000
3	12,4535	32,3839	55,1626	100,0000
4	13,2473	57,4133	29,3393	100,0000
5	5,1306	77,8251	17,0444	100,0000
6	4,7608	86,9546	8,2846	100,0000
7	4,5322	92,5999	2,8679	100,0000
8	28,3601	37,8190	33,8209	100,0000
9	41,4835	42,3032	16,2133	100,0000
10	17,7522	34,1944	48,0534	100,0000
11	12,3785	67,0601	20,5614	100,0000
12	20,0773	72,5118	7,4110	100,0000
13	7,1419	92,8581	0,0000	100,0000
14	40,9056	59,0944	0,0000	100,0000

Tabela 5 - Massas (g) de Al₂O₃, Y₂O₃ e Ta₂O₅ utilizadas para a preparação de 1,5 g das cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ e pseudo-binárias avaliadas neste estudo

Amostra	AI_2O_3	Ta₂O₅	Y_2O_3	TOTAL
1	0,0739	0,2401	1,186	1,5000
2	0,0639	0,6228	0,8133	1,5000
3	0,1868	0,4858	0,8274	1,5000
4	0,1987	0,8612	0,4401	1,5000
5	0,0770	1,1674	0,2557	1,5000
6	0,0714	1,3043	0,1243	1,5000
7	0,0680	1,3890	0,0430	1,5000
8	0,4254	0,5673	0,5073	1,5000
9	0,6223	0,6345	0,2432	1,5000
10	0,2663	0,5129	0,7208	1,5000
11	0,1857	1,0059	0,3084	1,5000
12	0,3012	1,0877	0,1112	1,5000
13	0,1071	1,3929	0,0000	1,5000
14	0,6136	0,8864	0,0000	1,5000

A Figura 10 apresenta o fluxograma que representa as etapas realizadas para o desenvolvimento deste estudo.

Figura 10 - Fluxograma mostrando as etapas previstas para o desenvolvimento do presente estudo

Fonte: Autor, 2023.

4.2 PROCESSAMENTO

Inicialmente, a quantidade de cada pó precursor de Al₂O₃, Y₂O₃ e Ta₂O₅ foi devidamente pesado em uma balança analítica eletrônica com calibração semi-automática, conforme os valores mostrados na Tabela 5.

Seguindo, as misturas de pós precursores foram homogeneizadas ao ar em um moinho tipo SPEX Sample-Prep modelo 8000M por 10 minutos, em um vaso de WC-Co (80 mL), com um movimento característico de 975 ciclos por minuto. Esferas de alumina com diâmetro de 10 mm foram utilizadas para evitar contaminação. Embora

este equipamento seja amplamente utilizado para a síntese de compostos metálicos e cerâmicos (SURYANARAYANA, 2001; TORRES; SHAEFFER, 2010), os tempos curtos adotados neste estudo têm como objetivo apenas a homogeneização química dos pós precursores. Essa etapa foi realizada utilizando um equipamento disponível no ICT-UNIFAL.

Em seguida, as misturas de pós de Al₂O₃-Y₂O₃-Ta₂O₅, previamente homogeneizadas, foram compactadas usando uma carga uniaxial de aproximadamente 1,5 toneladas (~187 MPa), em uma prensa hidráulica com capacidade de 5 toneladas, localizada no ICT-UNIFAL, com o objetivo de preparar pastilhas cilíndricas com 10 mm de diâmetro e aproximadamente 5 mm de altura. A figura 11 exibe as pastilhas compactadas de Al₂O₃-Y₂O₃-Ta₂O₅ avaliadas neste estudo. Foram preparadas duas unidades para as amostras de 1 a 4 e uma unidade para as demais amostras.

Figura 11 - Pastilhas compactadas das amostras de Al₂O₃-Y₂O₃-Ta₂O₅ avaliadas neste estudo

Fonte: Autor, 2023.

A fim de avaliar as possíveis transformações de fases em cerâmicas de Al_2O_3 - Y_2O_3 - Ta_2O_5 (e nas amostras pseudo-binárias correspondentes), as pastilhas foram submetidas a um tratamento térmico a 1300° C por 72 horas em um forno tubular

Thermo Scientific Lindberg/blue m 1700°C tube furnace, localizado no DEMAR-EEL-USP, o qual está ilustrado na figura 12.

Figura 12 - Forno utilizado para o tratamento térmico por 72 h das cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ e pseudo-binárias

Fonte: Thermo Fisher Scientific, 2023.

4.3 CARACTERIZAÇÕES

Após a análise por difratometria de raios X das amostras Al₂O₃-Y₂O₃-Ta₂O₅ tratadas termicamente por 72 horas (e das amostras pseudo-binárias correspondentes), decidiu-se realizar tratamentos térmicos adicionais a 1300°C por mais 150 horas, totalizando 222 horas de tratamento, em um forno localizado no Instituto Federal de São Paulo. Esses tratamentos visaram obter microestruturas de equilíbrio. Todas as amostras foram colocadas sobre um material refratário, e nesta etapa, utilizou-se uma taxa de aquecimento de 15°C/min e uma taxa de resfriamento de 15°C/min. A Figura 13 ilustra o forno utilizado para o tratamento térmico.

Figura 13 - Forno utilizado para o tratamento térmico adicional de 150 h das cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ e pseudo-binárias

Tanto as matérias-primas quanto as cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ tratadas termicamente foram caracterizadas por meio de técnicas de difratometria de raios X (DRX). No caso da microscopia eletrônica de varredura (MEV) e espectrometria por dispersão de energia (EDS), apenas as amostras tratadas termicamente por 222 h foram avaliadas, devido à maior possibilidade de sinterização.

Os experimentos de DRX das amostras de Al₂O₃-Y₂O₃-Ta₂O₅ foram realizados em um equipamento Malvern Panalytical modelo Empyrean com um limite de detecção de 3%. Foi utilizada radiação de Cu-Kα, com um ângulo de difração entre 10,02º a 89,97º, um passo de 0,02s, tempo de contagem de 100s por passo, tensão de 40kV e corrente de 30mA. A profundidade de penetração utilizada foi de 100 micrômetros. Para a indexação das fases, foram empregadas as fichas JCPDS, os dados cristalográficos da base de estruturas cristalinas (BdEC), bem como os dados cristalográficos de Pearson (Villars, 1998). Além disso, foram utilizados os programas de computador Powdercell (NOLZE; KRAUS, 1998) e X`Pert HighScore Plus (Malvern Panalytical). As figuras 14 e 15 mostram o equipamento de difratometria de raios X utilizado neste estudo, bem como um detalhe do goniômetro em seu interior, respectivamente.

Figura 14 - Difratômetro de raios X utilizado neste estudo

Figura 15 - Detalhe do goniômetro no interior do difratômetro de raios X

Para possibilitar a caracterização microestrutural via MEV e EDS, as amostras de Al₂O₃-Y₂O₃-Ta₂O₅ tratadas por 222 h foram inicialmente embutidas a quente em baquelite, utilizando uma prensa da marca Arotec modelo PRE-30Mi. Em seguida, as amostras embutidas foram lixadas e polidas em um equipamento marca Fortel modelo PLF. Para a etapa de lixamento, foram utilizadas lixas de SiC com grana de 400, 600, 1200, 1500 e 2000 #. Posteriormente, foi realizado o polimento inicial das amostras com o auxílio de uma solução de alumina de 1 μm, seguido de um polimento final das amostras com uma pasta de diamante de 0,25 μm.

As imagens de MEV das cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ tratadas termicamente por 222 h foram obtidas no modo de elétrons retroespalhados, visando obter informações composicionais. Essa etapa foi realizada em um equipamento da marca Hitachi, modelo TM-3000, com EDS Oxford ShiftED3000 acoplado, utilizando uma tensão aplicada de 15 kV, distância de trabalho de 8,5 mm e filamento de tungstênio. O equipamento pode ser visualizado na figura 16, com detalhes do porta amostras (figura 17). Para aumentar a condutividade elétrica das amostras e minimizar o acúmulo de energia em uma região específica durante a incidência do feixe de elétrons, a superfície das amostras foi revestida com ouro e uma fita de carbono foi utilizada entre a superfície revestida da amostra e a base do suporte metálico. A Tabela 6 apresenta os teores elementares (%-at.) das possíveis fases presentes nas cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅.

Figura 16 - Microscópio eletrônico de varredura Hitachi TM-3000 com detector de EDS

Figura 17 - Detalhe porta amostras

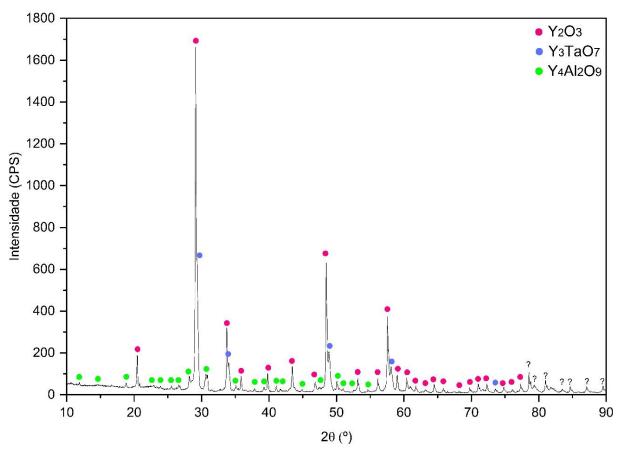
Tabela 6 - Teores elementares (%-at.) das possíveis fases presentes em cerâmicas de Al_2O_3 - Y_2O_3 - Ta_2O_5

Fase / Teor	AI (%-at.)	Ta (%-at.)	Y (%-at.)	O (%-at.)
Al ₂ O ₃	40,00			60,00
Ta ₂ O ₅		28,60		71,40
Y_2O_3			40,00	60,00
Y_3TaO_7		9,10	27,30	63,60
YTaO₄		16,70	16,70	66,60
YTa_3O_9		23,10	7,70	69,20
YTa ₇ O ₁₉		25,90	3,70	70,40
AlTaO₄	16,70	16,70		66,60
$Y_4AI_2O_9$ (YAM)	13,30		26,70	60,00
YAIO ₃ (YAP)	20,00		20,00	60,00
$Y_3AI_5O_{12}$ (YAG)	25,00		15,00	60,00

5 RESULTADOS E DISCUSSÕES

Os resultados estão apresentados, seguindo a ordem cronológica do presente estudo, apresentando-os separadamente para cada amostra: (1) sobre as cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ após tratamento térmico à 1300°C por 72 h; (2) sobre as cerâmicas de Al₂O₃-Y₂O₃-Ta₂O₅ após tratamento térmico à 1300°C por 222 h, como segue.

5.1 AMOSTRA 1 (11,11Al₂O₃ - 8,33Ta₂O₅ - 80,56Y₂O₃ %-molar)


A figura 18 mostra o difratograma de raios X da amostra 1 (11,11Al₂O₃ - 8,33Ta₂O₅ - 80,56Y₂O₃ %-molar) tratada termicamente à 1300°C por 72 h. De acordo com a seção isotérmica proposta inicialmente, a amostra 1 está localizada na região trifásica de Y₂O₃+Y₄Al₂O₉+Y₃TaO₇. De acordo com os resultados, os picos de Al₂O₃ e Ta₂O₅ desapareceram e apenas os picos das fases Y₂O₃, Y₄Al₂O₉ e Y₃TaO₇ foram identificados, sugerindo que as condições de equilíbrio foram atingidas. É possível notar no difratograma que não foram identificados picos para os ângulos de difração maiores que 78°, devido ao fato das fichas catalográficas não possuírem tais informações.

Y2O3 Y3TaO7 Y4Al2O9 Intensidade (CPS) 20 (°)

Figura 18 - Difratograma de raios X da amostra 1 após o tratamento térmico à 1300°C por 72h

O difratograma de raios X da amostra 1 (11,1111Al₂O₃ - 8,3333Ta₂O₅ - 80,5556Y₂O₃ %-molar) tratada termicamente à 1300°C por 222 h está mostrada na figura 19. Confirmando os resultados encontrados para esta amostra tratada termicamente por 72 h, os resultados indicaram a presença de picos de Y₂O₃, Y₄Al₂O₉ e Y₃TaO₇. Conforme mencionado anteriormente, os picos maiores que 78° não foram indexados pelo fato das fichas catalográficas base possuírem tais informações.

Figura 19 - Difratograma de raios X da amostra 1 tratada termicamente à 1300°C por 222 h

A figura 20 mostra a imagem de MEV da amostra 1 (11,1111Al₂O₃ - 8,3333Ta₂O₅ - 80,5556Y₂O₃ %-molar) tratada termicamente à 1300°C por 222 h, enquanto a Tabela 7 mostra os resultados de EDS das fases presentes nesta amostra. A microestrutura da amostra 1 revelou a presença das fases Y₂O₃, Y₄Al₂O₉ e Y₃TaO₇. De acordo com os resultados de EDS, o Y₂O₃ dissolveu cerca de 2,4-2,6 e 0,60 (%-at.) de íons de Al e Ta, respectivamente. Y₄Al₂O₉ e Y₃TaO₇ dissolveram entre 0,4-0,7 e 0,7-1,1 (%-at.) de íons de Ta e Al, respectivamente.

EEL-USP H D8.3 x50 2 mm
Amostra 1

Figura 20 - Imagem de MEV da amostra 1 tratada termicamente à 1300°C por 222 h

A imagem da figura 20 mostra uma trinca que pode ter surgido durante a preparação metalográfica ou devido as taxas de aquecimento e resfriamento adotadas (15º/min), e os pontos escuros a alumina com teores próximos de 38,5 (%-at.).

Tabela 7 - Resultados de EDS (%-at.) das fases presentes na amostra 1 tratada termicamente à 1300°C por 222 h

Fase/elemento	AI (%-at.)	Y (%-at.)	Ta (%-at.)	O (%-at.)
Y_2O_3	2,6-2,4	39,6-40,9	0,6-0,6	57,1-56,2
Y_3TaO_7	1,1-0,7	18,81-16,7	15,2-13,4	65-69,3
$Y_4AI_2O_9$	21,9-16,7	18,6-16,4	0,4-0,7	59,1-66,3
Global	6,9	29,9	2,7	60,6

Fonte: Autor, 2023.

De acordo com a seção isotérmica inicialmente proposta, a amostra 1 estava contida na região trifásica de Y₂O₃+Y₄Al₂O₉+Y₃TaO₇. Após tratamento térmico a 1300°C por 222 h, esta região trifásica foi confirmada. A Tabela 8 mostra os dados cristalográficos das fases identificadas na amostra 1.

Tabela 8 - Dados cristalográficos das fases presentes na amostra 1 tratada termicamente à 1300°C por 222 h

Fase	Ficha ICSD	Sistema Cristalino	Grupo Espacial	N° Grupo Espacial
Y ₂ O ₃	080033	Cúbico	la-3	206
$Y_4AI_2O_9$	051077	Monoclínica	P21/c	14
Y₃TaO ₇	010059	Ortorrômbico	C2221	20

5.2 AMOSTRA 2 (11,11Al₂O₃ – 25,00Ta₂O₅ - 63,89Y₂O₃ %-molar)

A figura 21 mostra o difratograma de raios X da amostra 2 (11,11Al $_2$ O $_3$ – 25,00Ta $_2$ O $_5$ - 63,89Y $_2$ O $_3$ %-molar) tratada termicamente a 1300°C por 72 h. De acordo com a seção isotérmica inicialmente proposta, esta amostra está localizada na região trifásica de Y $_4$ Al $_2$ O $_9$ +Y $_3$ TaO $_7$ +YTaO $_4$. Somente os picos das fases Y $_3$ TaO $_7$ e Y $_2$ O $_3$ foram identificados, sugerindo que as fases de equilíbrio não foram formadas após o tratamento térmico por 72 h.

O difratograma de raios X da amostra 2 (11,11Al₂O₃ – 25,00Ta₂O₅ - 63,89Y₂O₃ %-molar), tratada termicamente à 1300°C por 222 h, está apresentado na figura 22. De acordo com os resultados, foram identificados picos de Y₂O₃, Y₃TaO₇, Y₄Al₂O₉ e YTaO₄. É possível notar no difratograma não foram identificados os picos para os ângulos de difração maiores que 78°, pelo fato das fichas catalográficas não apresentarem tais informações.

Figura 21 - Difratograma de raios X da amostra 2 após o tratamento térmico à 1300°C por 72h

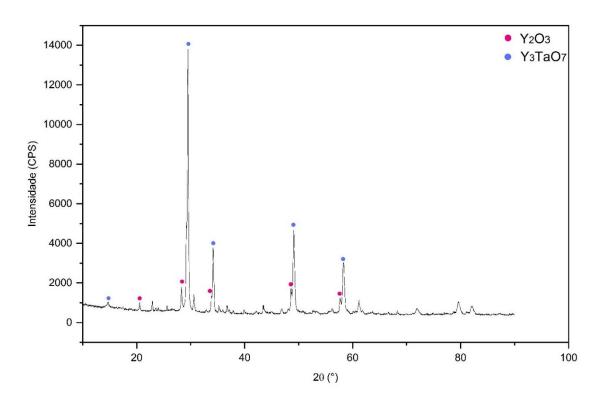
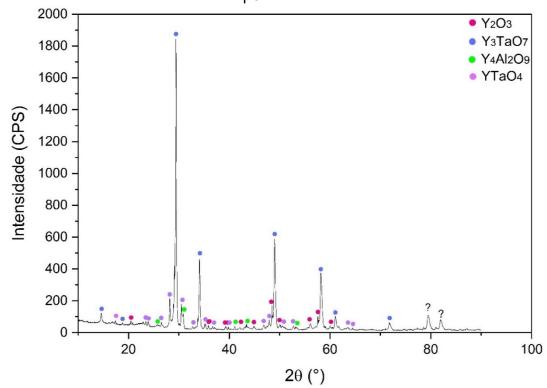
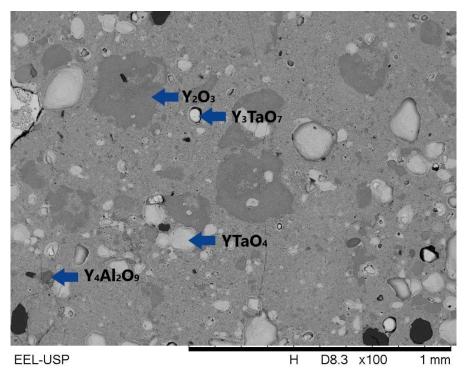



Figura 22 - Difratograma de raios X da amostra 2 tratada termicamente à 1300°C por 222 h



A figura 23 apresenta a imagem de MEV da amostra 2 (11,11Al₂O₃ – 25,00Ta₂O₅ – 63,89Y₂O₃ %-molar) tratada termicamente à 1300°C por 222 h, enquanto a Tabela 9 mostra os resultados de EDS das fases presentes nesta amostra. A microestrutura da amostra 2 revelou a presença das fases Y₂O₃, Y₃TaO₇, Y₄Al₂O₉ e YTaO₄. A presença de uma pequena quantidade de precipitados de Y₂O₃ e a formação das fases Y₃TaO₇ e YTaO₄ a partir dos precursores de Y₂O₃ e Ta₂O₅ indicam que tempos maiores são necessários para a obtenção de microestruturas de equilíbrio. De acordo com os resultados de EDS, YTaO₄ e Y₃TaO₇ dissolveram entre 0,5-3,1 e 2,1-3,7 %-at. de íons de AI, respectivamente.

De acordo com a seção isotérmica inicialmente proposta, a amostra 2 estava contida na região trifásica de Y₃TaO₇+YTaO₄+Y₄Al₂O₉. Após tratamento térmico a 1300°C por 222 h, a amostra não atingiu as condições de equilíbrio.

A Tabela 10 mostra os dados cristalográficos das fases identificadas na amostra 2.

Figura 23 - Imagem de MEV da amostra 2 tratada termicamente à 1300°C por 222 h

Amostra 2

Tabela 9 - Resultados de EDS (%-at.) da amostra 2 tratada termicamente à 1300°C por 222 h

Fase/elemento	AI (%-at.)	Y (%-at.)	Ta (%-at.)	O (%-at.)
Y ₂ O ₃	2,3-4,6	32,1-30,2	0,6-0,8	64,9-64,5
Y₃TaO ₇	2,1-3,7	15,9-12,4	8,5-7,0	73,7-76,9
$Y_4AI_2O_9$	2,9-2,4	25,8-23,3	10,1-6,7	61,2-67,6
YTaO₄	0,5-3,1	15,3-20,2	16,6-13,6	70,4-62,6
Global	5,34	21,88	6,50	66,28

Tabela 10 - Dados cristalográficos para a amostra 2 tratada termicamente à 1300°C por 222 h

Fase	Ficha ICSD	Sistema Cristalino	Grupo Espacial	N° Grupo Espacial
Y ₄ Al ₂ O ₉	051077	Monoclínica	P21/c	14
Y ₃ TaO ₇	010059	Ortorrômbico	C2221	20
YTaO₄	020265	Monoclínica	P2/a	13
Y_2O_3	080033	Cúbico	la-3	206

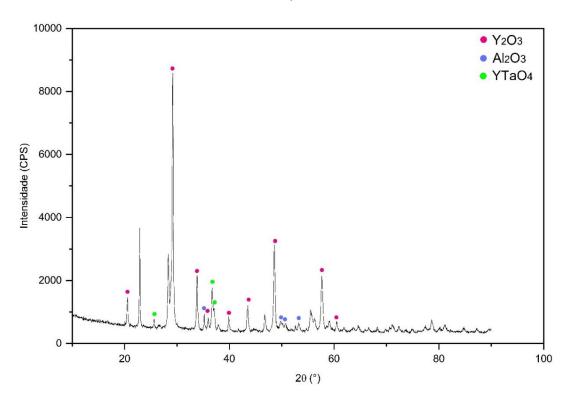
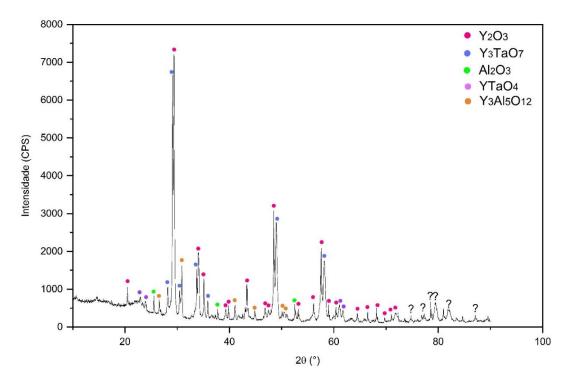
Fonte: Autor, 2023.

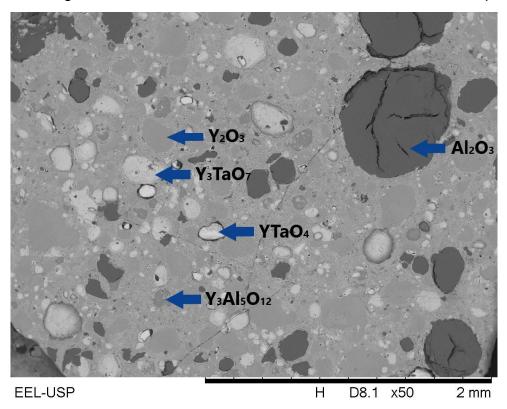
5.3 AMOSTRA 3 (27,78Al₂O₃ - 16,67Ta₂O₅ - 55,56Y₂O₃ %-molar)

A figura 24 mostra o difratograma de raios X da amostra 3 (27,78Al₂O₃ - 16,67Ta₂O₅ - 55,56Y₂O₃ %-molar) tratada termicamente a 1300°C por 72 h, a qual foi posicionada na seção isotérmica inicialmente proposta, na região trifásica de Y₄Al₂O₉, YAlO₃ e YTaO₄. Foram identificados os picos das fases Y₂O₃, Al₂O₃ e YTaO₄, sugerindo que as condições de equilíbrio foram atingidas.

Para verificar e confirmar se as condições de equilíbrio foram atingidas, a amostra foi tratada termicamente por tempos maiores. A figura 25 mostra o difratograma de raios X da amostra 3 (27,78Al₂O₃ – 16,67Ta₂O₅ – 55,56Y₂O₃ %-molar) tratada termicamente à 1300°C por 222 h. Os resultados indicaram a presença de picos de Y₂O₃, Y₃TaO₇, Al₂O₃, YTaO₄ e Y₃Al₅O₁₂.

Figura 24 - Difratograma de raios X da amostra 3 após o tratamento térmico à 1300°C por 72h


Figura 25 - Difratograma de raios X da amostra 3 tratada termicamente à 1300°C por 222 h

A imagem de MEV da amostra 3 ($27,78Al_2O_3 - 16,67Ta_2O_5 - 55,56Y_2O_3$ %-molar) tratada termicamente à 1300°C por 222 h está mostrada na figura 26, e a Tabela 11 apresenta os resultados de EDS das fases presentes nesta amostra.

A microestrutura da amostra 3 revelou a presença das fases Y₂O₃, Y₃TaO₇, Al₂O₃, YTaO₄ e Y₃Al₅O₁₂. De acordo com os resultados de EDS, YTaO₄ dissolveu 2,8 %-at., enquanto o Y₃Al₅O₁₂ e Y₃TaO₇ dissolveram entre 0,7-0,6 e 0,7-0,3 (%-at.) de íons de Ta e Al, respectivamente. Apenas a fase YTaO₄ inicialmente prevista foi confirmada, enquanto que outras fases intermediárias foram formadas mediante pares de difusão entre os pós precursores, indicando que as condições de equilíbrio não foram atingidas.

Figura 26 - Imagem de MEV da amostra 3 tratada termicamente à 1300°C por 222 h

Amostra 3

Tabela 11 - Resultados de EDS (%-at.) das fases presentes na amostra 3 tratada termicamente à 1300°C por 222 h

Fase/elemento	AI (%-at.)	Y (%-at.)	Ta (%-at.)	O (%-at.)
Y ₂ O ₃	5,6-6,0	36,6-34,7	0,7-0,6	58,9-58,6
Y₃TaO ₇	0,7-0,3	20,0-19,0	16,6-15,6	62,8-65,6
Al_2O_3	39,5-38,7	0,8-0,9	0,2-0,3	59,5-60,2
YTaO ₄	2,8	4,7	29,4	62,9
$Y_3AI_5O_{12}$	4,3-6,6	38,0-38,1	0,7-0,6	57,0-54,7
Global	13,11	20,19	3,95	62,75

De acordo com a seção isotérmica inicialmente proposta, a amostra 3 estava contida na região trifásica de YTaO₄+Y₄Al₂O₉+YAlO₃. Após tratamento térmico a 1300°C por 222 h, as fases propostas não foram identificadas. A Tabela 12 mostra os dados cristalográficos das fases identificadas na amostra 3.

Tabela 12 - Dados cristalográficos das fases presentes na amostra 3 tratada termicamente à 1300°C por 222 h

Fase	Ficha ICSD	Sistema Cristalino	Grupo Espacial	N° Grupo Espacial
Y ₂ O ₃	080033	Cúbico	la-3	206
YTaO ₄	020265	Monoclínica	P2/a	13
Al_2O_3	075560	Romboedro	R-3c	167
Y₃TaO ₇	010059	Ortorrômbico	C2221	20
Y ₃ Al ₅ O ₁₂	067102	Cúbica	la-3d	230

Fonte: Autor, 2023.

Ambas as amostras 10 (37,5Al₂O₃-16,67Ta₂O₅-45,83Y₂O₃ %-molar) e 11 (33,33Al₂O₃-41,67Ta₂O₅-25Y₂O₃ %-molar) estão também localizadas nas regiões trifásicas de YAlO₃+YTaO₄+Y₄Al₂O₉. Os resultados de DRX destas amostras têm também confirmada a presença de picos destas fases.

5.4 AMOSTRA 4 (33,33Al₂O₃ - 33,33Ta₂O₅ - 33,33Y₂O₃ %-molar)

A figura 27 mostra o difratograma de raios X da amostra 4 (33,33Al₂O₃ - 33,33Ta₂O₅ - 33,33Y₂O₃ %-molar) tratada termicamente a 1300°C por 72 h, a qual está localizada na região compreendida pelas fases YAlO₃, YTaO₄ e AlTaO₄. Picos de YTaO₄, Al₂O₃ e Y₂O₃ foram indexados, além de outros picos minoritários localizados entre 35° e 45°, não identificados. Logo, investigações adicionais tornaram-se necessárias.

A figura 28 mostra o difratograma de raios X da amostra 4 (33,33Al₂O₃ – $33,33Ta_2O_5 - 33,33Y_2O_3$ %-molar) tratada termicamente a 1300° C por 222 h, o qual indicou a presença de picos de YTaO₄, Al₂O₃, Y₂O₃, Ta₂O₅ e Y₃TaO₇.

A imagem de MEV da amostra 4 tratada termicamente à 1300°C por 222 h está mostrada na figura 29, a qual indicou a presença das fases YTaO₄, Al₂O₃, Y₂O₃, Ta₂O₅ e Y₃TaO₇.

De acordo com os resultados de EDS apresentados na Tabela 13, as fases YTaO₄ e Y₃TaO₇ dissolveram entre 2,3-3,8 %-at. Al e 7,7-13,3 %-at. Ta, respectivamente. Além disso, foram também identificadas na microestrutura desta amostra tratada termicamente a 1300°C por 222 h regiões ricas em Al₂O₃, Y₂O₃ e Ta₂O₅, indicando que as condições de equilíbrio não foram atingidas. A Tabela 14 apresenta os dados cristalográficos das fases identificadas na amostra 4.

De acordo com a seção isotérmica inicialmente proposta, a amostra 4 está contida na região trifásica de YAIO₃+AITaO₄+YTaO₄. De acordo com os resultados da amostra tratada termicamente a 1300°C por 222 h, esta região trifásica não foi confirmada.

A amostra 12 (50Al₂O₃-41,67Ta₂O₅-8,33Y₂O₃ %-molar) está localizada na região bifásica de AlTaO₄ e AlYO₃. Porém, sua composição está localizada mais próxima da fase AlTaO₄. Em concordância, os resultados de DRX desta amostra têm revelado a presença de picos majoritários de AlTaO₄.

Figura 27 - Difratograma de raios X da amostra 4 após o tratamento térmico à 1300°C por 72h

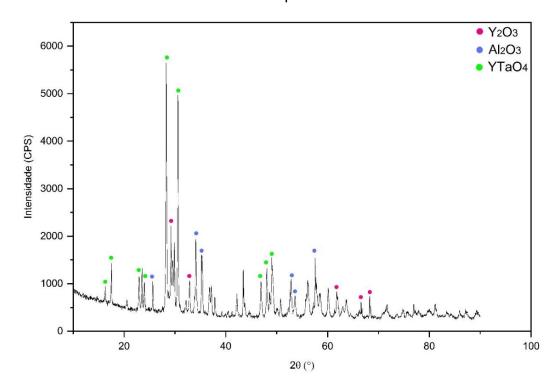
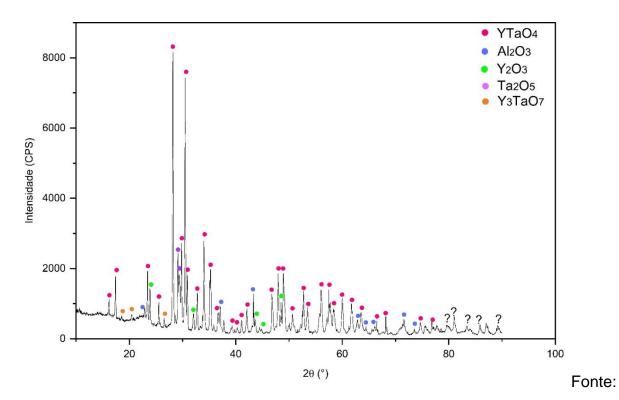



Figura 28 - Difratograma de raios X da amostra 4 tratada termicamente à 1300°C por 222 h

Y₂O₃
Y₁aO₂
YTaO₄

Figura 29 - Imagem de MEV da amostra 4 tratada termicamente à 1300°C por 222 h

EEL-USP Amostra 4

Tabela 13 - Resultados de EDS (%-at.) das fases presentes na amostra 4 tratada termicamente à 1300°C por 222 h

D8.0 x50

Fase/elemento	AI (%-at.)	Y (%-at.)	Ta (%-at.)	O (%-at.)
YTaO₄	2,3-3,8	11,8-13,0	12,8-13,3	73,1-70,0
Al_2O_3	35,4-36,9	0,4-0,3	0,3-0,3	63,9-62,5
Y_2O_3	6,0-3,7	28,2-24,2	0,6-0,6	65,2-71,5
Ta ₂ O ₅	1,7-1,7	0,2-0,2	21,3-24,1	76,9-74,1
Y_3TaO_7	5,3-3,8	8,3-13,0	7,7-13,3	78,6-70,0
Global	11,1	10,15	8,08	70,65

Tabela 14 - Dados cristalográficos das fases presentes na amostra 4 tratada termicamente à 1300°C por 222 h

Fase	Ficha ICSD	Sistema Cristalino	Grupo Espacial	N° Grupo Espacial
YTaO ₄	020265	Monoclínica	P2/a	13
Al_2O_3	075560	Romboedro	R-3c	167
Y_2O_3	080033	Cúbico	la-3	206
Ta ₂ O ₅	043498	Ortorrômbico	C2mm	38
Y₃TaO ₇	010059	Ortorrômbico	C2221	20

5.5 AMOSTRA 5 (16,67Al₂O₃ - 58,33Ta₂O₅ - 25,00Y₂O₃ %-molar)

A figura 30 mostra o difratograma de raios X da amostra 5 (16,67Al₂O₃ - 58,33Ta₂O₅ – 25,00Y₂O₃ %-molar) tratada termicamente a 1300°C por 72 h. De acordo com a seção isotérmica inicialmente proposta, esta composição está localizada na região trifásica de YTaO₄+AlTaO₄+YTa₃O₉. Os resultados indicaram a presença majoritária de picos das fases YTaO₄, Y₂O₃ e YTa₇O₁₉, além de outros minoritários, não identificados. Tempos maiores tornaram-se necessários para a confirmação das condições de equilíbrio desta amostra.

Neste contexto, a figura 31 mostra o difratograma de raios X da amostra 5 (16,67Al₂O₃ – 58,33Ta₂O₅ – 25,00Y₂O₃ %-molar) tratada termicamente à 1300°C por 222 h. As seguintes fases foram indexadas: YTaO₄, YTa₇O₁₉, Al₂O₃ e Y₂O₃.

A imagem de MEV da amostra 5 tratada termicamente à 1300°C por 222 h está mostrada na figura 32. A microestrutura desta amostra indicou a presença das fases YTaO₄, YTa₇O₁₉, Al₂O₃ e Y₂O₃. De acordo com os resultados de EDS mostrados na Tabela 15, as fases YTaO₄ e YTa₇O₁₉ dissolveram 0,2 e 0,3-0,2 %-at. de íons de Al, respectivamente. Em outras regiões, foram também identificadas as presenças de Al₂O₃ e Y₂O₃, indicando que as condições de equilíbrio não foram atingidas.

Figura 30 - Difratograma de raios X da amostra 5 após o tratamento térmico à 1300°C por 72h

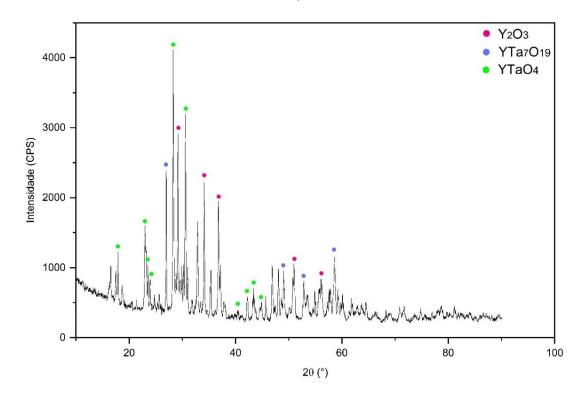
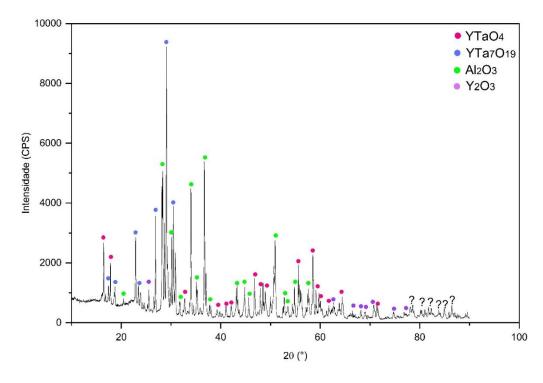



Figura 31 - Difratograma de raios X da amostra 5 tratada termicamente à 1300°C por 222 h

YTa7O₁₉

EEL-USP

H D8.7 x50 2 mm

Figura 32 - Imagem de MEV da amostra 5 tratada termicamente à 1300°C por 222 h

Amostra 5 Fonte: Autor, 2023.

Tabela 15 - Resultados de EDS (%-at.) das fases presentes na amostra 5 tratada termicamente à 1300°C por 222 h

Fase/elemento	AI (%-at.)	Y (%-at.)	Ta (%-at.)	O (%-at.)
YTaO ₄	0,2-0,2	16,0-18,9	15,0-17,8	68,9-63,0
YTa ₇ O ₁₉	0,3-0,2	18,1-16,0	17,5-15,0	64,1-68,8
Al_2O_3	37,6	0,2	0,4	61,8
Y_2O_3	6,4-4,8	29,1-28,5	0,8-0,9	63,7-65,8
Global	8,8	9,1	14,2	68,1

Fonte: Autor, 2023.

A Tabela 16 apresenta os dados cristalográficos das fases identificadas na amostra 5.

			•	
Fase	Ficha ICSD	Sistema Cristalino	Grupo Espacial	N° Grupo Espacial
YTaO ₄	020265	Monoclínica	P2/a	13
YTa ₇ O ₁₉ *	04-005-7941	Haxagonal	Pmna	201
AI_2O_3	075560	Romboedro	R-3c	167
Y_2O_3	080033	Cúbico	la-3	206

Tabela 16 - Dados cristalográficos das fases presentes na amostra 5 tratada termicamente à 1300°C por 222 h

*Pearson's Crystal Data

Fonte: Autor, 2023.

De acordo com a seção isotérmica inicialmente proposta, a amostra 5 está contida na região trifásica de YTaO₄+AlTaO₄+YTa₃O₉, e após o tratamento térmico de 222 h não foi possível confirmar a região.

5.6 AMOSTRA 6 (16,67Al₂O₃ – 70,23Ta₂O₅ – 13,10Y₂O₃ %-molar)

A figura 33 mostra o difratograma de raios X da amostra 6 (16,67Al₂O₃-70,23Ta₂O₅-13,10Y₂O₃ %-molar) tratada termicamente a 1300°C por 72 h. De acordo com a seção isotérmica proposta inicialmente, esta composição está localizada na região trifásica de YTa₃O₉+YTa₇O₁₉+AlTaO₄. Os resultados têm indicado a presença de picos majoritários das fases Al₂O₃, Ta₂O₅ e YTa₇O₁₉. Apenas alguns picos minoritários não foram identificados no DRX desta amostra. Tratamento térmico mais prolongado pode contribuir para a obtenção do equilíbrio termodinâmico.

Neste contexto, a figura 34 mostra o difratograma da amostra 6 (16,67Al₂O₃ – 70,23Ta₂O₅ – 13,10Y₂O₃ %-molar) tratada termicamente à 1300°C por 222 h. As seguintes fases foram indexadas: YTaO₄, Al₂O₃, Ta₂O₅, AlTaO₄ e Y₄Al₂O₉.

A imagem de MEV e os resultados de EDS das fases presentes na amostra 6 tratada termicamente à 1300°C por 222 h estão apresentados na figura 35 e na Tabela 17, respectivamente. A microestrutura desta amostra indicou a presença das fases YTaO₄, Al₂O₃, Ta₂O₅, AlTaO₄ e Y₄Al₂O₉. Outras regiões ricas em Al₂O₃ e Ta₂O₅ foram também identificadas na microestrutura, indicando que esta amostra não atingiu o equilíbrio termodinâmico.

Figura 33 - Difratograma de raios X da amostra 6 após o tratamento térmico à 1300°C por 72h

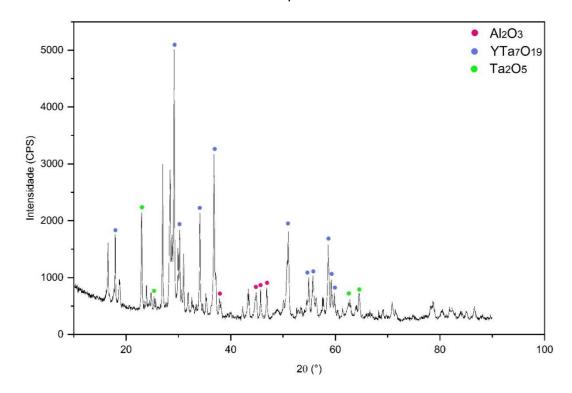
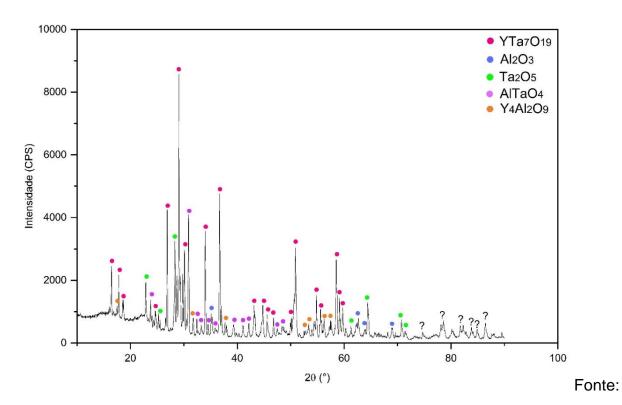



Figura 34 - Difratograma de raios X da amostra 6 tratada termicamente à 1300°C por 222 h

Ta₂O₅

Y₄Al₂O₉

Al₂O₃

EEL-USP

H D7.9 x50 2 mm

Figura 35 - Imagem de MEV da amostra 6 tratada termicamente à 1300°C por 222 h

Amostra 6

Fonte: Autor, 2023.

Tabela 17 - Resultados de EDS (%-at.) das fases presentes na amostra 6 tratada termicamente à 1300°C por 222 h

Fase/elemento	AI (%-at.)	Y (%-at.)	Ta (%-at.)	O (%-at.)
YTa ₇ O ₁₉	0,4	17,5	17,4	64,6
Al_2O_3	37,6	0,1	0,6	61,8
Ta ₂ O ₅	8,9-1,49	0-0,5	22,3-29,5	68,8-68,4
AlTaO ₄	6,2	6,3	19,1	68,33
$Y_4AI_2O_9$	8,7	18,7	8,7	69,2
Global	9,4	3,4	18,3	68,8

Fonte: Autor, 2023.

De acordo com a seção isotérmica inicialmente proposta, a amostra 6 não está contida na região trifásica de AlTaO₄+YTa₃O₉+YTa₇O₁₉. A Tabela 18 apresenta os dados cristalográficos das fases presentes na amostra 6.

		'	•	
Fase	Ficha ICSD	Sistema Cristalino	Grupo Espacial	N° Grupo Espacial
 YTa ₇ O ₁₉ *	04-005-7941	Haxagonal	Pmna	201
AI_2O_3	075560	Romboedro	R-3c	167
Ta ₂ O ₅	043498	Ortorrômbico	C2mm	38
AlTaO ₄	067676	Ortorrômbico	Pbcn	60
$Y_4AI_2O_9$	051077	Monoclínica	P21/c	14

Tabela 18 - Dados cristalográficos das fases presentes na amostra 6 tratada termicamente à 1300°C por 222 h

*Pearson's Crystal Data

Fonte: Autor, 2023.

Ambas as amostras 13 ($25Al_2O_3$ - $75Ta_2O_5$ %-molar) e 14 ($75Al_2O_3$ - $25Ta_2O_5$ %-molar) estão também localizadas na região bifásica de AlTaO₄+Ta₂O₅ e AlTaO₄+Al₂O₃, respectivamente.

5.7 AMOSTRA 7 (16,67Al₂O₃ - 78,57Ta₂O₅ - 4,76Y₂O₃ %-molar)

A figura 36 mostra o difratograma de raios X da amostra 7 (16,67Al₂O₃-78,57Ta₂O₅-4,76Y₂O₃ %-molar) tratada termicamente a 1300°C por 72 h, a qual está localizada na região trifásica de YTa₇O₁₉, AlTaO₄ e Ta₂O₅, da seção isotérmica inicialmente proposta. Os picos de Al₂O₃ e Y₂O₃ desapareceram, enquanto os picos majoritários das fases YTa₇O₁₉, AlTaO₄ e Ta₂O₅ foram indexados no DRX desta amostra. No entanto, picos minoritários não foram indexados, sugerindo que tempos mais prolongados se tornam necessários para a obtenção das condições de equilíbrio.

A figura 37 mostra o difratograma da amostra 7 ($16,67Al_2O_3 - 78,57Ta_2O_5 - 4,76Y_2O_3$ %-molar) tratada termicamente à $1300^{\circ}C$ por 222 h. As seguintes fases foram indexadas: YTa7O₁₉, AlTaO₄ e Ta₂O₅.

Figura 36 - Difratograma de raios X da amostra 7 após o tratamento térmico à 1300°C por 72h

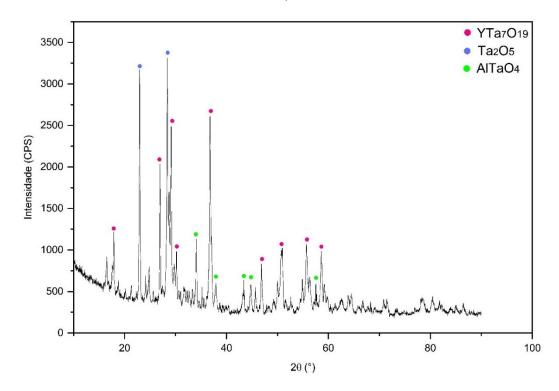
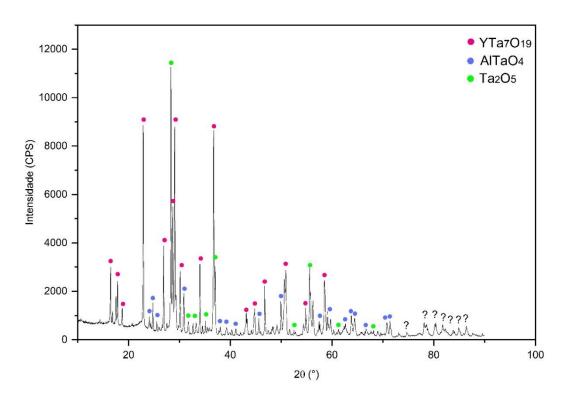
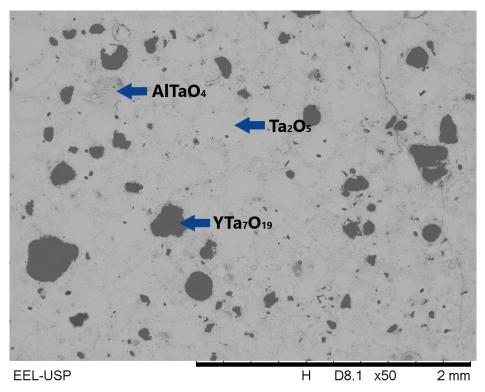




Figura 37 - Difratograma de raios X da amostra 7 tratada termicamente à 1300°C por 222 h

A imagem de MEV e os resultados de EDS das fases presentes na amostra 7 tratada termicamente à 1300°C por 222 h estão apresentados na figura 38 e na Tabela 19, respectivamente. A microestrutura desta amostra indicou a presença das fases YTa7O₁₉, AlTaO₄ e Ta₂O₅. Os resultados de EDS revelaram que as fases AlTaO₄ e Ta₂O₅ dissolveram teores de ítrio desprezíveis, enquanto a fase YTa₇O₁₉ dissolveu 0,3 %-at. de íons de Al. Estes resultados confirmaram a existência da região trifásica de AlTaO₄+ YTa₇O₁₉+Ta₂O₅.

Figura 38 - Imagem de MEV da amostra 7 tratada termicamente à 1300°C por 222 h

Amostra 7

Fonte: Autor, 2023.

Tabela 19 - Resultados obtidos por EDS para amostra 7 tratada termicamente à 1300°C por 222 h

Fase/elemento	AI (%-at.)	Y (%-at.)	Ta (%-at.)	O (%-at.)
YTa ₇ O ₁₉	0,3	3,9	26,9	68,9
AlTaO ₄	14,0	0	18,5	67,5
Ta ₂ O ₅	1,3	0	28,7	70,0
Global	8,05	1,13	21,10	69,72

De acordo com a seção isotérmica inicialmente proposta, a amostra 7 está contida na região trifásica de AlTaO₄+YTa₇O₁₉+Ta₂O₅. A Tabela 20 apresenta os dados cristalográficos das fases presentes na amostra 7.

Tabela 20 - Dados cristalográficos das fases presentes na amostra 7 tratada termicamente à 1300°C por 222 h

Fase	Ficha ICSD	Sistema Cristalino	Grupo Espacial	N° Grupo Espacial
AlTaO₄	067676	Ortorrômbico	Pbcn	60
YTa ₇ O ₁₉ *	04-005-7941	Haxagonal	Pmna	201
Ta ₂ O ₅	043498	Ortorrômbico	C2mm	38

^{*}Pearson's Crystal Data Fonte: Autor, 2023.

5.8 AMOSTRA 8 (54,16Al₂O₃ - 16,67Ta₂O₅ - 29,17Y₂O₃ %-molar)

A figura 39 mostra o difratograma de raios X da amostra 8 (54,16Al₂O₃ - 16,67Ta₂O₅ - 29,17Y₂O₃ %-molar) tratada termicamente a 1300°C por 72 h. De acordo com a seção isotérmica inicialmente proposta, esta composição está localizada na região trifásica de Y₃Al₅O₁₂+YAlO₃+AlTaO₄. Os resultados têm indicado a presença de picos de YTaO₄ e Y₃Al₅O₁₂, além de picos de Y₂O₃, indicando que tempos mais prolongados se tornam necessários para a obtenção do equilíbrio termodinâmico. Além destes, outros picos minoritários não foram também identificados.

Para confirmação dos resultados anteriores, a amostra 8 (54,17Al $_2$ O $_3$ – 16,67Ta $_2$ O $_5$ – 29,17Y $_2$ O $_3$ %-molar) foi tratada termicamente à 1300°C por 222 h. A figura 40 mostra o difratograma de raios X desta amostra. De acordo com os resultados, foram identificados a presença dos picos de Al $_2$ O $_3$, YTaO $_4$, Y $_3$ TaO $_7$, Y $_3$ Al $_5$ O $_{12}$ e Y $_2$ O $_3$.

Figura 39 - Difratograma de raios X da amostra 8 após o tratamento térmico à 1300°C por 72h

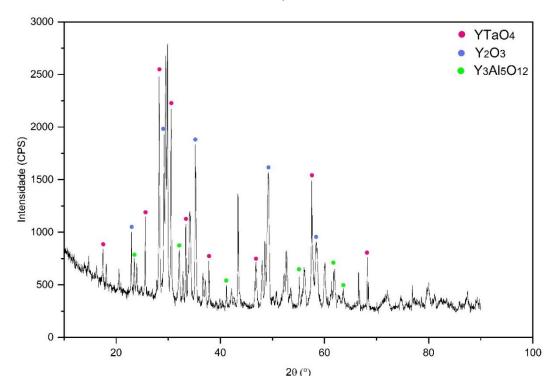
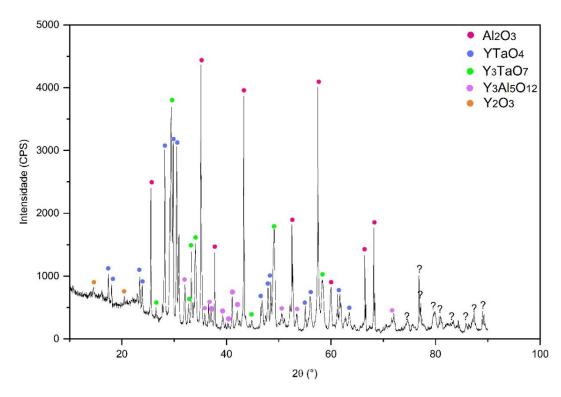
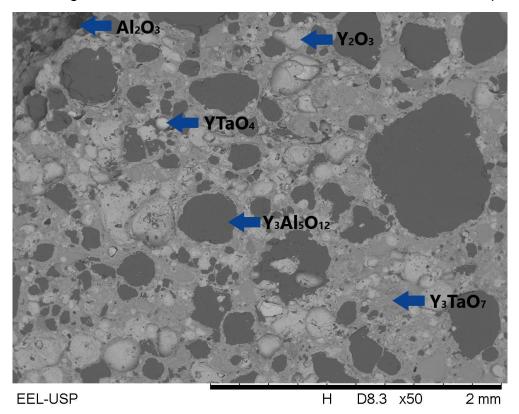




Figura 40 - Difratograma de raios X da amostra 8 tratada termicamente à 1300°C por 222 h

A figura 41 apresenta a imagem de MEV da amostra 8 (54,17Al₂O₃ – 16,67Ta₂O₅ – 29,17Y₂O₃ %-molar) tratada termicamente à 1300°C por 222 h, enquanto a Tabela 21 mostra os resultados de EDS das fases presentes na microestrutura desta amostra. De acordo com os resultados de DRX, o ítrio está presente em uma fase (Y₃Al₅O₁₂), enquanto o tântalo está presente em AlTaO₄ e Y₃TaO₇. Devido ao fato das dimensões pequenas das fases na microestrutura desta amostra, não foi possível realizar medidas em regiões isoladas, contendo uma única fase. Al₂O₃ exibiu solubilidade de 0,3 %-at. e 0,1 %-at. de íons de Y e Ta, respectivamente, indicando que a amostra não atingiu o equilíbrio termodinâmico.

Figura 41 - Imagem de MEV da amostra 8 tratada termicamente à 1300°C por 222 h

Amostra 8

Tabela 21 - Resultados de EDS (%-at.) das fases presentes na amostra 8 tratada termicamente à 1300°C por 222 h

Fase/elemento	AI (%-at.)	Y (%-at.)	Ta (%-at.)	O (%-at.)
Al ₂ O ₃	38,9	0,3	0,1	60,7
YTaO ₄	11,2	9,2	8,3	71,2
Y₃TaO ₇	2,8	16,9	15,9	64,4
$Y_3AI_5O_{12}$	22,7	7,1	3,4	66,7
Y_2O_3	6,1	8,8	7,7	77,3
Global	22,71	7,26	3,76	66,26

De acordo com a seção isotérmica inicialmente proposta, a amostra 8 não está contida na região trifásica de YAIO₃+AITaO₄+Y₃AI₅O₁₂.

A Tabela 22 mostra os dados cristalográficos das fases presentes na amostra 8.

Tabela 22 - Dados cristalográficos das fases presentes na amostra 8 tratada termicamente à 1300°C por 222 h

Fase	Ficha ICSD	Sistema Cristalino	Grupo Espacial	N° Grupo Espacial
Al ₂ O ₃	075560	Romboedro	R-3c	167
YTaO₄	020265	Monoclínica	P2/a	13
Y ₃ TaO ₇	010059	Ortorrômbico	C2221	20
$Y_3AI_5O_{12}$	067102	Cúbico	la-3d	230
Y_2O_3	080033	Cúbico	la-3	206

Fonte: Autor, 2023.

5.9 AMOSTRA 9 (70,83Al₂O₃ - 16,67Ta₂O₅ - 25,00Y₂O₃ %-molar)

A figura 42 apresenta o difratograma de raios X da amostra 9 (70,83Al₂O₃ - 16,67Ta₂O₅ - 25,00Y₂O₃ %-molar) tratada termicamente. De acordo com a seção isotérmica a 1300°C inicialmente proposta, esta composição está localizada na região trifásica de Y₃Al₅O₁₂+Al₂O₃+AlTaO₄. De acordo com os resultados, foram confirmadas presenças de picos das fases YTaO₄, Y₂O₃ e Ta₂O₅. Além disso, outros picos minoritários não foram identificados no DRX desta amostra, sugerindo que as condições de equilíbrio não foram atingidas.

4000 - YTaO4 Y2O3 Ta2O5

3000 - 1000 - 20 (°)

Figura 42 - Difratograma de raios X da amostra 9 após o tratamento térmico à 1300°C por 72h

A figura 43 mostra o difratograma de raios X da amostra 9 ($70,83Al_2O_3 - 16,67Ta_2O_5 - 12,50Y_2O_3$ %-molar) tratada termicamente à 1300° C por 222 h, o qual indicou a presença de picos de Al_2O_3 , $YTaO_4$, Y_2O_3 e Ta_2O_5 .

A figura 44 apresenta a imagem de MEV da amostra 9 (70,83Al₂O₃ – 16,67Ta₂O₅ – 12,50Y₂O₃ %-molar) tratada termicamente à 1300°C por 222 h, enquanto a Tabela 23 mostra os resultados de EDS das fases presentes nesta amostra. De acordo com os resultados de EDS, o Al₂O₃ dissolveu entre 0,2,-0,1 e 0,3-0,2 %-at. de íons de Y e Ta, respectivamente. Estes resultados não confirmaram a existência da região trifásica de Al₂O₃+Y₃Al₅O₁₂+AlTaO₄.

Figura 43 - Difratograma de raios X da amostra 9 tratada termicamente à 1300°C por 222 h

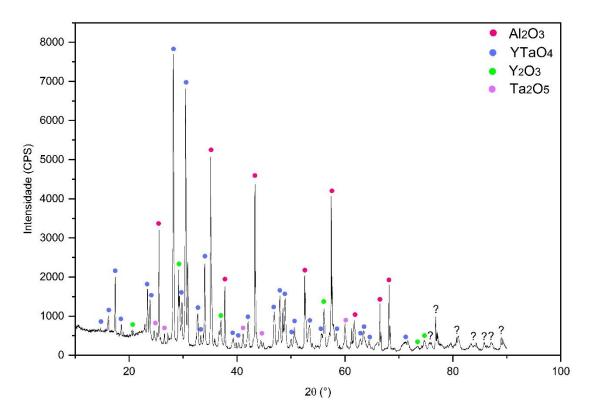


Figura 44 - Imagem de MEV da amostra 9 tratada termicamente à 1300°C por 222 h

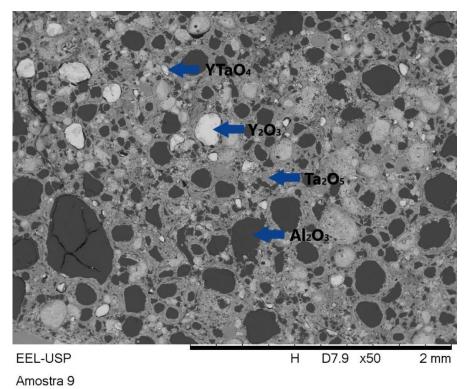


Tabela 23 - Resultados de EDS (%-at.) da amostra 9 tratada termicamente à 1300°C por 222 h

Fase/elemento	Al (%-at.)	Y (%-at.)	Ta (%-at.)	O (%-at.)
Al ₂ O ₃	36,3-36,7	0,2-0,1	0,3-0,2	63,2-63,0
YTaO₄	5,8	15,8	13,9	76,3
Y_2O_3	7,2	27,7	0,6	64,6
Ta ₂ O ₅	4,5	0,5	26,4	68,6
Global	23,3	3,3	4,5	68,9

9:

A Tabela 24 mostra os dados cristalográficos das fases presentes na amostra

Tabela 24 - Dados cristalográficos das fases presentes na amostra 9 tratada termicamente à 1300°C por 222 h

Fase	Ficha ICSD	Sistema Cristalino	Grupo Espacial	N° Grupo Espacial
Al ₂ O ₃	075560	Romboedro	R-3c	167
YTaO ₄	020265	Monoclínica	P2/a	13
Y_2O_3	080033	Cúbico	la-3	206
Ta ₂ O ₅	043498	Ortorrômbico	C2mm	38

Fonte: Autor, 2023.

De acordo com a seção isotérmica inicialmente proposta, a amostra 9 não está contida na região trifásica de Al₂O₃+Y₃Al₅O₁₂+AlTaO₄.

6 CONCLUSÕES

Após o tratamento térmico a 1300° C por 72h e 222h, as seguintes regiões trifásicas de $Y_2O_3+Y_4Al_2O_9+Y_3TaO_7$ e $YTa_7O_{19}+AlTaO_4+Ta_2O_5$ foram determinadas a partir das composições químicas de $11,11Al_2O_3$ - $8,33Ta_2O_5$ -80,56 Y_2O_3 e $16,67Al_2O_3$ -78,57 Ta_2O_5 -4,76 Y_2O_3 (%-molar), respectivamente.

Tempos de moagem mais prolongados podem contribuir para a obtenção de misturas de pós mais homogêneos. O uso de pós precursores com menores tamanhos de partículas, assim como tempos mais prolongados e temperaturas mais elevadas de tratamento térmico podem contribuir para a obtenção de microestruturas de equilíbrio.

7 SUGESTÕES PARA TRABALHOS FUTUROS

Com objetivo de dar continuidade aos estudos envolvendo as cerâmicas de Al₂O₃+Y₂O₃+Ta₂O₅, seguem algumas sugestões para trabalhos futuros:

- Alterar o processo de homogeneização durante a preparação das amostras;
- Determinação dos teores de AI, Y, Ta e O das fases, com auxílio de microanálises via WDS (espectroscopia de raios X por comprimento de onda), utilizando um MEV-FEG com baixa tensão, para minimizar a interferência de fases vizinhas;
- Criação de uma nova ficha cristalográfica para a fase AlTaO₄, a partir de dados cristalográficos já existentes.

REFERÊNCIAS

ABELL, D. S. *et al.* An investigation of phase stability in the Y₂O₃-Al₂O₃ system. **Journal of Materials Science**, [s. *l.*], v. 9, n. 4, p. 527-537, 1974.

AUERKAKI, P. Mechanical and physical properties of engineering alumina ceramics. **Technical research centre of Finland**. Finland, n. 1972, p.1-26. 1996.

BONDAR, I.A., KALININ A.I., KOROLEVA L.N.. Physico chemical investigation of the system Y₂O₃-Ta₂O₅ and synthesis of single crystals of a series of niobates. **Inorganic Materials**, [s. l.], p. 1649-1650, 1974.

CALLISTER JR., William D. **Ciência e Engenharia dos Materiais -** Uma Introdução. 5ª Edição. Rio de Janeiro: Editora Guanabara, 2008.

CHINELATTO, A.S.A. Evolução Microestrutural durante a sinterização de pós finos e de alta pureza de alumina. 2002, 88f. Tese (Doutorado em Ciência e Engenharia dos Materiais) – Universidade Federal de São Carlos, São Carlos, SP, 2002.

DIGNE, M. et. Al. Structure and stability of aluminium hidroxides: A theoretical study. **J. Phys. Chem. B.**, [s. l.], v. 106, p. 5155-5162, 2002.

GODOY, A. L. E.; BRASSIANI, J. C.; BRESSIANI, A. H. A. Cerâmicas à base de SiC: Al₂O₃-Y₂O₃ com adição de polímeros precursores. **Cerâmica**, São Paulo, v.54, n.329, p. 110-119, Mar. 2008.

JIANG, Y. *et al.* Phase relations in the SiC–Al₂O₃–Y₂O₃ system. **Materials Letters**, n. 165, p. 26-28, 2016.

MAKOVECA, D.; ZUO, J. M.; TWESTEN, R.; PAYNE, D. A. A high temperature structure for Ta₂O₅ with modulations by TiO₂ substitution. **Journal of Solid State Chemistry**, v.179, n.6, p.1782-1791, 2006.

NOLZE, G.; KRAUS, W. PowderCell 2.0 for Windows. **Powder Diffraction**, v. 13, p. 256 - 259, 1998.

NAMUR, R. S. Influência do eletrólito ácido e do método de obtenção no crescimento e propriedades de óxidos anódicos de tântalo para aplicações biomédicas, 2014, 98f. Dissertação (Mestrado em Engenharia e Ciência de Materiais) - Universidade Federal do Paraná. Curitiba, PR, 2014.

SEPULVEDA, P., Gelcasting foam for porous ceramics, **American Ceramic Society Bulletin**, [s. *I.*], v.76, n. 10, pp. 61-65, Oct. 1997.

SEPULVEDA, P., BINNER, J.G.P., Processing of cellular ceramics by foaming and in situ polymerization of organic monomers, **Journal of the European Ceramic Society**, [s. I.], v. 19, pp. 2059-2066, Oct. 1999.

SEPULVEDA, P.; ORTEGA, F. S.; INNOCENTINI, M. D. M., *et al.* Properties of highly porous hydroxyapatite obtained by the gelcasting of foams. **Journal of the American Ceramic Society**, [s. *l.*], v.83, n.12, pp. 3021-3024, 2000.

SHEN, J. **Advanced Ceramics for dentistry**. 1. Ed. [s. *l*.]: Butterworth-Heinemann, 2013.

SIGMUND, W.M., BELL N.S., BERGSTROM, L., Novel powder-processing methods for advanced ceramics, **Journal of the American Ceramic Society**, [s. *l.*], v. 83, n. 7, pp. 1557-1574, Jul. 2000.

SURYANARAYANA, C. Mechanical alloying and milling. **Progress in Materials Science**, [s. *I.*], v. 46, n. 1-2, p. 01-184, Jan. 2001.

THERMO FISHER SCIENTIFIC. Lindberg/Blue M™ Moldatherm™ Box Furnaces. 2023. Disponível em:

https://www.thermofisher.com/order/catalog/product/BF51794C. Acesso em: 10 maio 2023.

TONELLO, K. P. S.; Compósitos de alumina com adições de NbC, TaC e TIC para aplicação em ferramentas de corte. **Instituto de Pesquisas Energéticas e Nucleares** – Autarquia Associada à Universidade de São Paulo, [s. l.], p. 66 a 75, 2013.

TORRES, C. S.; SHAEFFER, L. Efeito da moagem de alta energia na morfologia e compressibilidade do compósito WC-Ni. **Matéria (Rio de Janeiro)**, Rio de Janeiro, v. 15, n. 1, p. 88-95, jan. 2010.

VASIL'EV, V.S., PINAEVA M.M., and S.F. SHKIRMAN, Subsolidus Phase Equilibria in the Ta2O5- Y2O3 System. **Russian Journal of Inorganic Chemistry**, [s. *l*.], v. 24, p. 57-59, 1979.

YOKOGAWA, Y., YOSHIMURA, M., Formation and stability regions of the high-temperature fluorite-related phase in the R₂O₃-Ta₂O₅ system. **Journal of the American Ceramic Society**, v.80, p. 1965-1974, 1997.

YOUNG, A.C., OMATETE, O.O., JANNEY, M.A., *et al.*, Gelcasting of alumina, **Journal of the American Ceramic Society**, [s. l.], v. 74, n. 3, pp. 612-618, 1991.

ZUEV, M. G. Phase relations in ternary oxide systems of Group III and VB elements in a subsolidus region. **Russian Chemical Reviews**, [s. l.], v. 69, p. 551-571, 2000.