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ABSTRACT 

 

The quest for innovative anti-inflammatory agents with reduced side effects is a 

compelling area of interest in pharmaceutical research. The inhibition of prostaglandin 

E2 (PGE2) and leukotriene (LTB4) releasing are significant as they are key mediators 

in different inflammatory diseases. Natural Products (NP) offer a rich source of 

structurally diverse and functionally distinct specialised metabolites that can assist in 

the discovery of novel therapeutic agents. In this context, our research explored the ex 

vivo anti-inflammatory potential of 60 plant extracts from the Ocotea genus, most 

studied for the first time. Our objectives consist of applying metabolomics and 

computational tools to annotate biomarkers associated with anti-inflammatory activity. 

Machine learning models were also built to predict novel anti-inflammatory Ocotea 

extracts. The chemical composition of various endemic and threatened Ocotea species 

from different biomes in Brazil were analysed, leading to the annotation of multiple 

classes of specialized metabolites. Chapter I provides a classic review of all the 

identified metabolites within the Ocotea genus, culminating in the creation of a 

comprehensive in-house database named OcoteaDB. This literature review also 

explores the relevant biosynthetic pathways of the bioactive chemical scaffolds found 

in the genus. Chapter II is a research article of a metabolomics study that revealed the 

PGE2 inhibition release of Ocotea spp. can be majorly attributed to aporphine 

alkaloids. By employing ultra-performance liquid chromatography coupled with high-

resolution mass spectrometry (UPLC-MS) combined with OcoteaDB, we achieved a 

rapid and reliable annotation process. Chapter III is a research article on the dual 

COX/LOX inhibitory biomarkers in promising Ocotea species using a concatenated 

UPLC-MS - Nuclear Magnetic Resonance (NMR) metabolomics approach and 

machine learning prediction models. This time, alkaloids, a glycosylated flavonoid and 

a sesquiterpenoid were correlated with the potential dual anti-inflammatory activity. 

Chapter IV solidifies the significance of the Ocotea genus as a producer of different 

classes of alkaloids, lignoids and glycosylated flavonoids using gas-phase 

fragmentation reactions and molecular networking in the annotation procedure. A 

UPLC-MS-DIA (data-independent acquisition) open pipeline was developed by 

integrating data conversion, processing, and metabolomics tools analysis. This thesis 

provided valuable insights into the metabolome and anti-inflammatory profile of several 



unstudied Ocotea species, as well as a pipeline for future NP research computational 

analyses. The scientific knowledge generated can be applied in the search for new 

anti-inflammatory compounds and also contributes to highlighting the importance of 

conserving Ocotea species in Brazil, encouraging their preservation for future 

research. 

Keywords: Metabolomics, Mass spectrometry, Ocotea, Anti-inflammatory, Natural 

Products, Chemometrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESUMO 

A busca por agentes anti-inflamatórios inovadores com menos efeitos colaterais é uma 

área de grande interesse na pesquisa farmacêutica. A inibição da liberação de 

prostaglandina E2 (PGE2) e leucotrieno B4 (LTB4) é relevante pois estes são mediadores 

chave em diversas doenças inflamatórias. Produtos Naturais (PN) oferecem uma rica 

fonte de metabólitos especializados, estruturalmente diversos e funcionalmente distintos, 

que podem auxiliar na descoberta de novos agentes terapêuticos. Neste contexto, nossa 

pesquisa explorou o potencial anti-inflamatório ex vivo de 60 extratos de plantas do gênero 

Ocotea, muitas estudados pela primeira vez. O objetivo deste projeto consiste em aplicar 

ferramentas computacionais de metabolômica para anotar biomarcadores associados à 

atividade anti-inflamatória e modelos de aprendizado de máquina para prever novos 

extratos de Ocotea ativos. A composição química de várias espécies endêmicas e 

ameaçadas de Ocotea de diferentes biomas no Brasil foram analisadas, levando à 

anotação de múltiplas classes de metabólitos especializados. O Capítulo I apresenta uma 

revisão clássica de todos os metabólitos identificados dentro do gênero Ocotea, 

culminando na criação de um banco de dados abrangente chamado OcoteaDB. Esta 

revisão da literatura também explora as vias biossintéticas relevantes dos esqueletos 

químicos bioativos no gênero. O Capítulo II é um artigo de pesquisa de um estudo 

metabolômico que revelou que a inibição da liberação de PGE2 em espécies de Ocotea 

pode ser atribuída majoritariamente a alcaloides do tipo aporfina. Ao empregar 

cromatografia líquida de ultra performance acoplada à espectrometria de massas de alta 

resolução (CLAE-EM) combinada com o OcoteaDB, alcançamos um processo de 

anotação rápido e confiável. O Capítulo III é um artigo de pesquisa sobre biomarcadores 

inibidores duais das vias COX/LOX em espécies promissoras de Ocotea, utilizando uma 

abordagem metabolômica concatenada CLAE-EM - Ressonância Magnética Nuclear 

(RMN) e modelos de predição por aprendizado de máquina. Desta vez, os alcaloides, 

seguidos por um flavonoide glicosilado e um sesquiterpenoide foram correlacionados com 

a atividade anti-inflamatória dual. O Capítulo IV solidifica a importância do gênero Ocotea 

como um produtor de diferentes classes de alcaloides, lignoides e flavonoides 

glicosilados, utilizando reações de fragmentação em fase gasosa e redes moleculares no 

processo de anotação. Foi criado um pipeline aberto CLAE-EM-DIA (aquisição de dados 

independente) pela integração da conversão de dados, processamento e análise usando 

ferramentas metabolômicas. Esta tese gerou conhecimento sobre o metaboloma e o perfil 

anti-inflamatório de várias espécies de Ocotea ainda não estudadas, e um fluxo de 



trabalho para futuras análises computacionais de PN. O conhecimento científico gerado 

pode ser aplicado na busca de novas substâncias ativas na inflamação e também 

contribuir para destacar a relevância da conservação de plantas do gênero Ocotea no 

Brasil, estimulando a preservação de suas espécies para futuras pesquisas. 

Palavras-chave: Metabolômica, Espectrometria de massas, Ocotea, Anti-inflamatório, 

Produtos Naturais, Quimiometria. 
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1 INTRODUCTION 

1.1 Inflammation  

 
Inflammation is a crucial defence mechanism of the immune system, triggered 

by various factors in response to harmful stimuli such as fungi, viral or bacterial 

infections, tissue damage, or the development of different diseases. Inflammatory 

pathways are essential for protecting the body and initiating healing processes. During 

the initial inflammatory phase, the body works to eliminate the cause of cell injury, 

remove damaged cells, and restore tissue homeostasis. However, when inflammation 

is exacerbated, prolonged, or chronic and becomes associated with pathological 

conditions, it can lead to significant tissue damage and contribute to the progression 

of a range of diseases such as psoriasis, gouty arthritis, diabetes, atherosclerosis, 

trauma, ischemia, cancer, and autoimmune diseases (Chen et al., 2018; Landskron et 

al., 2014; Meirer; Steinhilber; Proschak, 2014).  

The inflammatory response can manifest acutely or chronically and may occur 

either systemically or locally, depending on the underlying pathology (Landskron et al., 

2014; Multhoff; Molls; Radons, 2012). In response to tissue injury, the body initiates 

chemical signalling cascades that stimulate inflammation at the affected sites. A key 

process in this response is the activation of arachidonic acid (AA) metabolism, which 

plays a crucial role in the progression of inflammation. This process involves the 

release of key chemical mediators, such as prostaglandins (PGs) and leukotrienes 

(LTs), which not only regulate vascular permeability but also control the recruitment of 

leukocytes during inflammation. Additionally, the release of various growth factors, 

chemokines, and cytokines further contributes to the regulation and progression of the 

inflammatory process (Chen et al., 2018; Coussens; Werb, 2012; Fiorucci et al., 2001; 

Landskron et al., 2014).  

The AA is a 20-carbon polyunsaturated fatty acid that is released from 

membrane phospholipids through physiological stimulation by phospholipases 

enzymes, predominantly by the type-IV cytosolic PLA2-α, after the initial damage to 

the body tissues (Broughton; Janis; Attinger, 2006; Meirer; Steinhilber; Proschak, 

2014). After AA is released, it can undergo metabolism through various enzymatic 

pathways. One such pathway involves the action of cyclooxygenase (COX), which is 

responsible for the production of PGs and thromboxanes (TXs). Another pathway 

involves lipoxygenase (LOX), which produces LTs, and lipoxins (LXs). Additionally, 
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cytochrome P450 enzymes (CYP) play a crucial role in the production of 

epoxyeicosatrienoic acids (EETs). These enzymatic pathways contribute to the diverse 

array of lipid mediators involved in physiological and pathological processes 

(Coussens; Werb, 2012; Meirer; Steinhilber; Proschak, 2014). 

These chemical inflammatory mediators produced, such as PGs, TXs and LTs 

are substances that act in an autocrine and paracrine manner on target cells after their 

extracellular release. The prostaglandin E2 (PGE2), is one of the key final mediators 

derived from the AA inflammatory cascade, mediated mainly by COX enzymes and 

also terminal synthases in the pathway such as microsomal prostaglandin E synthase-

1 (mPGES) (Chagas-paula et al., 2015a; Ding et al., 2018; Fiorucci et al., 2001; 

Mahesh; Kumar; Reddanna, 2021). Targeting the COX pathway has been a central 

focus of pharmaceutical interventions to effectively reduce acute inflammatory 

responses and mitigate inflammation-related diseases. Inhibiting PGE2 is particularly 

important due to its central role in driving the hallmark symptoms of inflammation—

pain, redness, heat, swelling, and the resulting loss of cell function (Funk, 2001; Meirer; 

Steinhilber; Proschak, 2014).  

In this context, steroidal anti-inflammatory drugs (SAIDs), such as 

glucocorticoids, e.g. dexamethasone (Figure 1), are well-known for their ability to 

inhibit phospholipase A2 (PLA2 α) at the very beginning of the inflammatory cascade, 

as well as nuclear factor-κB (NF-κB), a family of inducible transcription factors that 

regulate a wide array of genes involved in immune and inflammatory responses 

(Hwang et al., 2013). This inhibition by SAIDs leads to a broad reduction in the 

production of inflammatory mediators including a decrease in PGE2, though it occurs 

earlier in the inflammatory pathway, and not directly via COX enzyme inhibition. 

Instead, non-steroidal anti-inflammatory drugs (NSAIDs), which are among the most 

commonly used anti-inflammatory drugs on the market, act as selective or non-

selective inhibitors of the COX-1 and COX-2 isoforms, important examples include 

acetylsalicylic acid (aspirin), ibuprofen, diclofenac, naproxen, indomethacin and others 

(Figure 1). By directly inhibiting these enzymes, NSAIDs reduce the secretion of PGs, 

reducing inflammation, alleviating pain, and lowering fever, particularly through the 

more selective reduction of PGE2 levels at sites of inflammation, making them 

indispensable treatments for a variety of inflammatory conditions (Leslie, 2015; Meirer; 

Steinhilber; Proschak, 2014). 
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Similarly, leukotriene B4 (LTB4) is a potent lipid mediator involved in 

inflammatory responses, particularly known for its role in recruiting and activating 

leukocytes, chemokinetic and chemotactic responses which amplifies inflammation 

and contributes to tissue damage (Rang et al., 2011). Unlike NSAIDs that target COX 

enzymes, the inhibition of LOX enzymes, particularly 5-LOX, such as with zileuton 

(Figure 1), is essential for reducing LTB4 synthesis. By lowering LTB4 levels, LOX 

inhibitors can potentially reduce the severity of inflammation by limiting leukocyte 

infiltration and activation. This targeted approach is especially effective in managing 

both chronic and acute inflammatory conditions and is primarily used in the treatment 

of asthma, where it helps reduce bronchoconstriction, inflammation, and mucus 

production associated with leukotrienes, which play a significant role in respiratory 

inflammatory responses (Leslie, 2015; Meirer; Steinhilber; Proschak, 2014; Rang et 

al., 2011). 

Moreover, it is recognized that anti-inflammatory drugs are among the most 

used drugs worldwide. However, the effectiveness of currently available drugs can 

significantly decrease when used in long-term treatments or chronic situations, leading 

to a lower effectiveness-to-side-effect ratio and a higher incidence of adverse reactions 

(Dugowson; Gnanashanmugam, 2006; Hwang et al., 2013). Anti-inflammatory drugs 

on the market can induce adverse drug reactions, often due to a lack of specificity to 

inhibit PGE2 release or subsequent imbalances in the AA metabolic pathways. These 

side effects are particularly problematic for individuals requiring long-term therapy, 

where millions of people suffer from pain, and the prolonged use of NSAIDs has 

become a common health concern (Ghosh; Alajbegovic; Gomes, 2015; Hwang et al., 

2013). 

While SAIDs are known for their potency, they can cause a range of mild to 

severe side effects, especially when used at higher doses or for extended periods. 

These side effects include high blood pressure, weight gain, fluid retention, mood 

swings, and detrimental effects on bone and eye health. In contrast, NSAIDs are 

generally safer for short-term use and effective at reducing pain and inflammation. 

However, in long-term, they affect the renal and cardiovascular systems and the 

gastrointestinal tract, where they can cause ulcers and internal bleeding, especially 

when taken orally (Meirer; Steinhilber; Proschak, 2014; Yang et al., 2007).  More 

recently, COX-2 selective inhibitors, a subclass of NSAIDs such as celecoxib (Figure 

1), were developed to selectively inhibit the COX-2 enzyme while sparing the 
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constitutive and more physiological COX-1, thereby reducing the risk of gastrointestinal 

side effects. However, their use has been associated with an increased risk of 

cardiovascular events and stroke, particularly when used at doses higher than 

recommended, leading to greater caution in their prescription and use (Hwang et al., 

2013; Mahesh; Kumar; Reddanna, 2021). 

 

 

Source: From author (2024) 

 

Additionally, a common side effect of NSAIDs is their potential to unbalance the 

AA pathway, as the sole inhibition of COXs may lead to a diversion of the AA 

metabolism towards the LTs pathway, leading to an increased LT levels production. 

This overproduction can result in adverse effects, particularly for individuals with 

respiratory conditions, where it may exacerbate bronchoconstriction, or for those with 

gastric mucosa damage, worsening their condition. These effects could potentially be 

mitigated by administering 5-LOX inhibitors or LT antagonists. Such risks underscore 

the importance of careful use of these drugs in susceptible populations (Ghosh; 

Alajbegovic; Gomes, 2015; Rang et al., 2011). 

In this context, many currently available anti-inflammatory drugs can trigger mild 

to serious adverse reactions. These drawbacks highlight the urgent need for innovative 

therapies. The enzyme mPGES-1 has attracted considerable attention because it is 

the final step in the inflammatory cascade, offering a more targeted approach to PGE2 

inhibition with potentially fewer adverse effects (Ding et al., 2018; Meirer; Steinhilber; 

Figure 1 - 

 
Chemical structure of popular currently approved anti-inflammatory drugs. 
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Proschak, 2014). Also, dual COX/LOX inhibitors show promise as a novel strategy for 

the next generation of anti-inflammatory drugs. By simultaneously targeting both 

pathways, dual inhibitors might induce an enhanced anti-inflammatory effect without 

damaging the gastrointestinal mucosa. Therefore, the ongoing search for new, viable 

anti-inflammatory agents remains crucial, intending to develop substances that offer 

enhanced efficacy and reduced side effects (Chagas-paula et al., 2015a; Cui et al., 

2018; RudrapaL et al., 2023).  

In addition to relieving pain, anti-inflammatory drugs, particularly NSAIDs, are 

effective anticancer agents due to their ability to reduce inflammation, a process that 

promotes tumor development. Inflammation attracts immune and inflammatory cells to 

the tumor microenvironment (TME), contributing to metastasis. The overexpression of 

COX enzymes leads to an accumulation of PGE2 in the TME, which is closely linked 

to cancer progression, especially in breast cancer. PGE2 plays a crucial role in 

promoting cancer cell growth and survival by modulating the TME, and also by 

stimulating pro-inflammatory cytokines and chemokines that recruit more immune 

cells, creating a pro-tumor environment. This supports cancer cell proliferation, 

migration, invasion, and inhibits apoptosis (Mahesh; Kumar; Reddanna, 2021; Nandi 

et al., 2017; Timoshenko et al., 2003; Yuan et al., 2012). 

Cancer and inflammation are interconnected at various levels, with PGE2 

inhibition emerging as a key therapeutic target, particularly when combined with 

chemotherapy. PGE2 plays a well-documented role in promoting lymphangiogenesis, 

a process crucial for cancer metastasis via lymphatic vessels. This is particularly 

evident in breast cancer, where COX-2 overexpression leads to elevated PGE2 levels. 

The presence of PGE2 in the TME, driven by increased COX-2 expression, contributes 

to cancer progression through mechanisms such as lymphangiogenesis (Karnezis et 

al., 2012; Paduch, 2016). This negatively impacts patient health and it is a frequent 

manifestation in almost all epithelial cancers, including lungs, stomach, colon, breast, 

pharynx and larynx, uterine cervix, prostate and the ovary (Nandi et al., 2017; Paduch, 

2016). 

 The inflammatory conditions are responsible for one of the first cancer routes 

of spread, via bloodstream, and then later metastasize from the lymph nodes to other 

organs. The newly formed lymphatic capillaries work as conduits for the entrance and 

spread of cancer cells to lymph nodes (Karnezis et al., 2012; Nandi et al., 2017; 

Paduch, 2016). Depending on the tumour, metastasis already occur in the existing 
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lymphatic vessels, and lymphangiogenesis is triggered as a late process (Nandi et al., 

2017; Paduch, 2016). Thus, targeting inflammation, including molecules like PGE2, 

could be an effective cancer treatment strategy, as PGE2 is produced by various 

immune and cancer cells, and plays a crucial role in cancer pathology (Chini et al., 

2020; Mantovani, 2018). Studies show that COX-2 inhibitors can reduce tumour growth 

by inhibiting tumour-associated angiogenesis and lymphangiogenesis (Karnezis et al., 

2012; Lyons et al., 2014; Wang; Honn; Nie, 2007). 

Recent research unfolded the mechanism revealing the upregulation of 

lymphangiogenic growth factors VEGF-C or VEGF-D in tumour cells (Nandi et al., 

2017; Rozic; Chakraborty; Lala, 2001; Xu et al., 2019). Physiologically, PGE2 is 

metabolized by the enzyme 15-hydroxyprostaglandin dehydrogenase (pgdh). 

However, primary tumors can secrete VEGF-D, which downregulates the expression 

of the pgdh gene, inhibiting the degradation of PGE2 in the extracellular environment. 

This inhibition of PGE2 degradation by VEGF-D leads to lymphatic vessel dilation, 

promoting an increase in metastases and tumor growth (Karnezis et al., 2012; Nandi 

et al., 2017). Also, VEGF-C or VEGF-D secreted by tumour cells can increase vascular 

permeability or have important effects on the pressure of the tumour interstitial fluid, 

which can promote the entry of tumour cells into the lymph. In addition, VEGF-C 

increases COX-2 expression, further elevating PGE2 levels (Karnezis et al., 2012; 

Nandi et al., 2017). Consequently, either COX or VEGF-C/D inhibitors have shown 

promise in reducing PGE2 in the TME and preventing metastases (Figure 2) (Karnezis 

et al., 2012; Majumder et al., 2014; Nandi et al., 2017).  
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Source: Karnezis et al. (2012)  

As a result, it is crucial to study anti-inflammatory drugs for their significant role 

in both cancer treatment and management of a range of inflammatory related-

diseases. These drugs are vital in reducing inflammation, a common underlying factor 

in several of these chronic conditions. Novel therapeutic strategies can help manage 

symptoms, slow disease progression, and improve patient outcomes. Therefore, 

studying new therapies can lead to advancements in treating a wide spectrum of 

diseases where inflammation plays a critical role. 

 

 1.2 Natural Products 

 
Natural products (NP) are chemical compounds of living organisms such as 

plants, animals, fungi, bacteria, and marine organisms, encompassing a vast array of 

Figure 2 - Schematic representation of the connection between the lymphangiogenic 
growth factors (VEGF-C and VEGF-D), PGE2 level and the cancer 
metastasis through lymphatic vessels regulated by enzyme 15-
hydroxyprostaglandin dehydrogenase (pgdh) inactivation and COX-2 
overexpression.  
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specialized metabolites with complex biosynthetic pathways, wide bioactivity profiles, 

and unique chemical structures (Dewick, 2009; Harvey; Edrada-ebel; Quinn, 2015). 

These compounds have played a pivotal role in the development of new therapies and 

drugs, offering a rich source of structurally diverse and functionally distinct specialised 

metabolites that serve as leads for the discovery of novel therapeutic agents 

(Gaudêncio; Pereira, 2015). Ethnobotanical and ethnopharmacological studies are key 

to identifying species with medicinal potential, as they rely on the traditional knowledge 

of local communities regarding the use of plants and other natural resources in their 

popular medicine (Mangisa et al., 2021; Verpoorte; Choi; Kim, 2005). 

Chemotaxonomy-based plant selection studies provide another valuable approach, 

allowing researchers to trace new species and bioactive compounds based on 

previous chemical knowledge of the genus or family. This method complements 

traditional ethnobotanical approaches by providing a scientific framework for 

identifying and prioritizing species for further study (Gottlieb, 1972; Zidorn, 2019). 

The research in NP comprehends multiple stages, from the experimental 

design, and collection of biological samples to the extraction, isolation, and structural 

characterization of compounds, followed by the evaluation of their biological activities. 

The traditional approach to discovering bioactive constituents from complex NP 

mixtures is known as "bioassay-guided fractionation". This method involves simplifying 

and separating extracts using chromatographic techniques, followed by screening the 

resulting fractions for biological activity. This iterative process continues until a single 

bioactive compound is isolated and identified (Chan et al., 2006; Zidorn, 2019). While 

bioassay-guided fractionation has been the gold standard in NP discovery, leading to 

the identification of significant compounds like paclitaxel, artemisinin, and 

vincristine/vinblastine, morphine and atropine (Figure 3), it is not without challenges. 

One common issue is the loss of biological activity during the process or the failure to 

isolate a single active component from a complex mixture. Additionally, this method 

tends to favour the most abundant, which often results in the re-isolation of already-

known compounds. To address these limitations, modern NP approaches have 

integrated metabolomics and chemometrics tools, to access the metabolite profile of 

natural sources and investigate a higher number of known compounds in less amount 

of time (Demarque et al., 2020; Harvey; Edrada-ebel; Quinn, 2015; Patil; Patil; 

Maheshwari, 2016). 
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Source: From author (2024) 

 

 Moreover, NP chemistry is not only of pharmacological importance but also 

plays a fundamental role in understanding the biochemical and ecological processes 

of living organisms and has implications for the functioning of ecosystems. The 

structural diversity of natural compounds reflects the evolutionary adaptation of 

species to survive and interact with their environment (Dyer et al., 2018; Schmidt et 

al., 2019). Specialised metabolites, such as terpenoids, flavonoids, and alkaloids, are 

produced by organisms to fulfil specific ecological functions, including defence against 

predators, the attraction of pollinators, and competition with other species (Dyer et al., 

2018; Findlay, 2016). Therefore, the study of NP chemistry not only contributes to drug 

development but also provides valuable insights into the chemical ecology of 

organisms. 

Specialised metabolites such as alkaloids, terpenoids, lignoids, polyphenols, 

and glycosides often possess intricate chemical structures, featuring multiple chiral 

centres, conjugated systems, and fused rings (Conceição et al., 2020; Macedo et al., 

2020). The elucidation of these structures requires the combined use of advanced 

techniques such as nuclear magnetic resonance (NMR) spectroscopy, which provides 

detailed information on the chemical environment and connection of atoms, while liquid 

Figure 3 - 
 

Chemical structure of popular NP approved drugs. 
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chromatography coupled to high-resolution mass spectrometry (LC-HRMS) allows 

separation, precise determination of molecular masses and the identification of 

characteristic fragments. Both techniques have been extensively used in traditional 

and modern approaches in NP research (Alarcon-barrera et al., 2022; Zhang et al., 

2012). These analytical techniques corroborate each other to identify the chemical 

structures of natural compounds, a potential drug prototype and thus enable the 

possibility of structural analogues development with potentially enhanced biological 

properties in the medicinal chemistry field. Thus, NP research enriches our 

understanding of nature's chemical diversity and significantly contributes to the 

continuous advancement of drug discovery (Gobbo-neto; Lopes, 2007; Harvey; 

Edrada-ebel; Quinn, 2015). 

1.3 Lauraceae family and Ocotea genus 

 
 Following the FLORA BRASIL 2024, to date, 46.732 species belonging to the 

Plantae kingdom are officially recognized for the Brazilian flora. However, there is an 

estimate that Brazil shows the potential to possess around 400.000 plant species in 

the several phytogeographical domains of the country, which corresponds to the most 

extensive plant genetic diversity in the world (Silva et al., 2012). Moreover, Brazil has 

a significant record of ethnopharmacology use from a vast number of plant species, 

which were transmitted by popular knowledge through generations. Brazil's total land 

is extensive filled with many biomes and typical climates, as a result of different 

ecosystems of its natural abundant resources. Thus, in each part of the country, there 

are different vegetal species, with unique characteristics (Breitbach et al., 2013). The 

existing biomes in Brazil are the Amazon Forest, Cerrado, Pampas, Mata Atlântica, 

Caatinga, Pantanal, the transition bands, and the Brazilian marine biome (Ibama, 

2017). Thus, Brazil is one of the richest sources of pharmacologically active 

compounds worldwide, and most of them arise from the specialized metabolism of 

plants (Padilla et al., 2018).  

Regarding the botanical families of the Brazilian flora, the Lauraceae Jussieu is 

an important botanical family popularly called as laurel family. The Lauraceae has a 

natural distribution in the world's tropical and subtropical regions, found mainly in 

Southeast Africa and South America. This family gather more than 2850 species 

distributed along 67 genera (Veiga junior, 2014; Yamaguchi et al., 2011). Antoine 
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Laurent de Jussieu named the Lauraceae in 1789 after years of botanical research. 

The Lauraceae belongs to the order of Laurales, which is considered one of the most 

primitive families of the Magnoliophyta division and to the Plantae kingdom, which is 

represented by the organisms named the flowering plants, scientifically known as the 

angiosperms (Chase et al., 2016). Among the most known species in the family are 

the laurel (Laurus nobilis L.), the avocado (Persea americana Mill.), the cinnamon 

(Cinnamomum verum J. Presl.), and the camphor tree (Cinnamomum camphor 

Meisn.). The Lauraceae have a diversity of utility for humans, with broad economic 

input associated. Besides the use of these plant species in cooking, papermaking, 

carpentry and civil construction, several Lauraceae species are recognized in popular 

medicine. In addition, its essential oil is well explored by the pharmaceutical and 

cosmetic industry (Passos et al., 2022).  

Regarding Lauraceae, 27 native genera have been registered in Brazil, but not 

necessarily endemic to the country land, some also occur in other subtropical regions 

around the world. The Lauraceae genera found in Brazil are Aiouea, Anaueria, Aniba, 

Beilschmiedia, Cassytha, Cinnamomum, Cryptocaria, Dicypellium, Endlicheria, 

Kubitzkia, Licaria, Mezilaurus, Misanteca, Nectandra, Ocotea, Paraia, Persea, 

Phoebe, Phyllostemonodaphne, Pleurothyrium, Rhodostemonodaphne, Sextonia, 

Systemonodaphne, Urbanodendron and Williamdendron. Besides, the Laurus and 

Litsea genera are well established and grown in the country, although both were 

introduced to Brazil due to their economic importance (Chaverri; Cicció, 2005; Veiga 

Junior, 2014; Sacchetti et al., 2006; Trofimov; De Moraes; Rohwer, 2019; Yamaguchi 

et al., 2011). Particularly, the Ocotea genus is the largest genus of the Lauraceae 

family in the American continent and comprehends around 400 species widespread in 

world tropical and sub-tropical areas, such as Central and South America, Southern 

Africa and Madagascar. The Ocotea distribution worldwide is detailed in Figure 4.  

There are 101 endemic Ocotea spp. in Brazil, with around 160 species in total. 

Most of these Ocotea, endemic or not, have never been chemically or biologically 

evaluated before. Several Ocotea plants species occur in the Atlantic Forest biome, 

and thus they cover diverse states of the country, especially in the south and the central 

east. The Ocotea spp. are mostly found in the states of Paraná, Santa Catarina, Minas 

Gerais, São Paulo, Rio de Janeiro, Mato Grosso/Mato Grosso do Sul, Bahia, and 

Alagoas (Yamaguchi et al., 2011; Florabrasil, 2018).  
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     Source: The Polistes Corporation/ https://www.discoverlife.org. (2020) 

 

The Ocotea genus arouses great economic interest in the logging industry, such 

as the O. porosa or popularly known ‘imbuia’, and the wood from other species, for 

example, the O. puberula and O. bullata. The genus is represented mainly by aromatic 

trees which are fundamentally essential oil producers, rich in camphor (Chaverri; 

Cicció, 2005; Salleh; Ahmad, 2017). The essential oils of the popularly known 

medicinal plant sassafras (O. odorifera), and others produced by the Ocotea genus 

are used by the cosmetics and perfumery industry, e.g. O. cymbarum, O. caudata, O. 

pretiosa, O. usambarensis, O. sassafras and O. brenessi. Besides, Ocotea spp. is 

known to have the potential pharmacological activity for a diverse spectrum of diseases 

(Chaverri; Cicció, 2005; Sacchetti et al., 2006). In the popular medicine of native 

people from South America, there are several Ocotea species recognized for valued 

medicinal properties, such as analgesic, antioxidant and anti-inflammatory properties 

(Salleh; Ahmad, 2017).  

For example, in Peru and Equator, there is a traditional use of the O. quixos as 

a cinnamon substitute to aromatise food. However, it has demonstrated local 

anaesthetic and anti-diarrheic properties (Salleh; Ahmad, 2017). Moreover, the 

essential oil of O. quixos showed a significant suppression effect on LPS-induced nitric 

The map represents the distribution of species of the Ocotea genus 
worldwide. The yellow dots show that the Ocotea species are found 
mainly the American continent, and also present in the African 
continent, in areas nearest to Madagascar Island.  

Figure 4 - 

https://www.discoverlife.org/
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oxide (NO) release from macrophages at non-toxic concentrations and also inhibited 

LPS-induced PGE2 production in a significant manner. The western blotting analysis 

suggested O. quixos could suppress LPS-mediated iNOS and COX-2 elevation, and 

at higher concentrations revealed even better inhibition results. Also, the study showed 

that the inhibition ability of O. quixos was found to be comparable to that of curcumin, 

a well-known anti-inflammatory NP (Amilia destryana et al., 2014). 

In Brazil, O. lancifolia is known for anti-rheumatic properties, and a series of 

new biologically active sesquiterpenes have been isolated together with aporphine 

alkaloids and other specialised metabolites  (Palomino et al., 1996; Raquel et al., 

2010). Also, O. caparrapi has demonstrated cytotoxic effects and commonly is used to 

heal bites, such as insects or even snakes; it also has been indicated for bronchitis 

(Palomino et al., 1996). Likewise, O. leucoxylon has cytotoxic potential, as its crude 

extracts exhibit Topoisomerase I inhibition in anti-proliferative assays (Zhou et al., 

2000). 

Recently, our research group have evidenced the anti-inflammatory properties 

of O. odorifera and O. diospyrifolia leaves, which demonstrated potent in vivo anti-

inflammatory effects with dual inhibition of COX and LOX pathways. The process led 

to the isolation of a benzylisoquinoline alkaloid, the reticuline, and also a new 

aporphine alkaloid named diospiriofoline (Figure 5)  (De alcântara et al., 2021; Silva et 

al., 2021). Moreover, diastereomeric lignans of O. macrophylla (Figure 5) were 

revealed to be a potent dual COX-2/5-LOX inhibitor as well as platelet-activating factor 

(PAF) antagonist in a screening of Lauraceae lignans (Coy; Cuca; Sefkow, 2009). 

Chemically, the Ocotea genus was revealed to contain specialised metabolites 

from different chemical classes in different plant parts such as leaves and barks, 

containing mainly aporphine and benzylisoquinoline alkaloids, lignans, neolignans, 

flavonoids, phenylpropanoids, and terpenes (Batista et al., 2010; De Camargo et al., 

2013; Gottlieb, 1972; Ludy Cristina; Luis Enrique, 2010; Marques, 2001). Regarding 

the main chemical compounds in the genus, the alkaloid classes of benzylisoquinoline 

and aporphine, which are common in the Ocotea genus, have been described with a 

wide range of different bioactivities and mechanisms of action. The aporphine 

alkaloids, besides anti-inflammatory activity (De alcântara et al., 2021), are also 

recognized to have affinities by the dopaminergic, adrenergic and serotonergic 

receptors system, with potent agonist action (Kapadia; Harding, 2016).  
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Aporphine alkaloids from Dactylicapnos scandens (Papaveraceae) and semi-

synthetic aporphine alkaloids demonstrated potent in vivo anti-inflammatory activity, 

and the bioassay results suggested that the mechanism involved possibly caused 

peripherally anti-inflammatory effects by inhibition of the expression of cytokines TNF-

α and IL-1β, and also the chemical inflammation mediator PGE2 (Wang et al., 2020). 

The aporphine derivatives found in the Ocotea genus, dicentrine and glaucine (Figure 

5) showed also in vitro cytotoxic activity. The possible mechanisms investigated 

revealed that these compounds can bind to DNA and act as intercalating agents. Also, 

dicentrine and dicentrinone (Figure 5) can interfere with the catalyst activity of 

topoisomerases, which are enzymes that are important for keeping the proper topology 

of the double-helical DNA structure (Hoet et al., 2004; Salleh; Ahmad, 2017; Zhou et 

al., 2000).  

 

Source: From author (2024) 

 

1.4 Metabolomics and computational analysis 
 

Metabolites are the end products of cellular processes and reflect the combined 

influences of genes, environmental factors, and the organism's phenotype (Alarcon-

barrera et al., 2022; Aydoǧan et al., 2020). In recent years, the integration of modern 

approaches, such as metabolomics, chemometrics tools and machine learning (ML) 

Anti-inflammatory and cytotoxic NP isolated from Ocotea genus. 

 

Figure 5 -   
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techniques, has revolutionized the field of NP research and metabolite profile 

characterization (Chagas-paula et al., 2015b; Ebbels et al., 2023; Mannochio-russo et 

al., 2023). Particularly, metabolomics comprehends the study of small molecules, or 

metabolites, within cells, tissues, or organisms. It aims to comprehensively profile and 

quantify these metabolites to understand biological processes and how they change 

under different conditions (Alseekh et al., 2021; Canuto et al., 2018). On the other 

hand, chemometric and computational tools are statistical and mathematical methods 

used to analyze chemical data, such as those obtained from metabolomics. 

Chemometric tools help in interpreting multidimensional data sets, identifying patterns, 

and extracting meaningful information (Boccard et al., 2019; Yi et al., 2016). Whereas, 

ML is a subset of artificial intelligence that involves training algorithms to learn from 

data and make predictions or decisions without being explicitly programmed. In NP 

research, ML models can predict the biological activity of compounds and extracts, 

identify patterns in the metabolomics data, and assist in the prediction of new bioactive 

samples (Alcântara et al., 2023; Carpenter et al., 2018; Chagas-paula et al., 2015b) 

Metabolomics currently plays a central role in several areas of plant sciences 

and offers new perspectives for the advancement of drug discovery, chemical ecology 

and taxonomy research fields. These tools allow for a more systematic and 

comprehensive analysis of complex biological matrices, facilitating the rapid 

identification of bioactive compounds and their biosynthetic pathways (Ebbels et al., 

2023; Kosmides et al., 2013; Pilon et al., 2020). The fusion of traditional NP research 

with metabolomics and computational tools can accelerate the discovery of new drugs 

and open new frontiers in understanding the ecological roles and evolutionary 

significance of living organisms (Harvey; Edrada-ebel; Quinn, 2015; Nephali et al., 

2022; Pilon et al., 2020; Zhang et al., 2020). 

Metabolomics studies the metabolome, and the metabolome is defined as all 

metabolites of low-weight molecules of any biological sample of a living organism 

(Fiehn, 2001; Van Der Laan et al., 2020; Vuckovic, 2012). While, we are still far from 

covering the whole metabolome with only one single analytical technique, especially 

for plants due to their widespread specialized metabolism, metabolomics strategies 

can significantly aid the identification and characterization of metabolites under a given 

condition, qualitatively and quantitatively (Pilon et al., 2020; Vereyken et al., 2019). 

Thus, metabolomics is currently perceived as a rapidly advancing multidisciplinary field 

that involves the qualitative and quantitative analysis of the metabolome in a range of 
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different biological samples. Metabolomics can still be defined as a multiparametric 

approach that involves the systematic and comprehensive analysis of present 

metabolites in any biological system (Theodoridis; Gika; Wilson, 2011; Worley; 

Powers, 2012).  

Under metabolomics studies, the main chemical composition of an organism, a 

specific metabolite or metabolic via can be detected using different sets of hyphenated 

analytical techniques. LC-HRMS, GC-MS and NMR are the most commonly used 

techniques, which could be analysed separately or concatenated, and the generated 

data can be further analyzed in a range of different software and computational tools 

(Clendinen; Monge; Fernández, 2017; Ebbels et al., 2023; Farag et al., 2012; SPICER 

et al., 2017). As the samples of a metabolomics study usually contain complex 

chemical content, of several different classes of molecules, the sample preparation is 

challenging and typically followed by careful organization of data acquisition, 

configuration and type of the analytical platform selected,  extensive computational 

chemical analysis, which involves the normalization, deep data mining, multivariate 

statistical analyses (MSA), and sometimes the use of even other bioinformatics tools 

to perform adequate data interpretation (Alseekh et al., 2021; Evans et al., 2020; Long 

et al., 2020). 

However, metabolomics studies face several challenges, which include mainly 

the dynamic changing nature of the metabolism itself, including ongoing cellular 

interactions and environmental influences that complicate experimental 

standardization (Holmes; Wilson; Nicholson, 2008; Theodoridis; Gika; Wilson, 2011). 

Particularly, in plant metabolomics, the additional extensive chemical diversity of 

primary and secondary metabolites together with the wide concentration gradients of 

different substances, poses significant challenges in precisely understanding biological 

functions and characterizing structures, besides complicating experimental setups and 

data analysis (Pilon et al., 2020). Consequently, metabolomics analyses generate a 

complex, large and unavoidable amount of raw data, and thus metabolomics 

researchers rely on a range of different computational software and tools to perform 

the data processing and analysis, including open ones such as MZmine, MS-DIAL and 

OpenMS or commercial such as Target Analyses, Masslyns, UNIFI, XCMS and others. 

In general, these software allows data processing and the use of free and commercial 

databases, as well as, in house ones, which facilitates the dereplication and targeting 

of new substances to isolate, or those with pharmacological interest (Demarque et al., 
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2020; Tsugawa et al., 2015; Vereyken et al., 2019). Dereplication also commonly 

named annotation or putative identification, is the identification of compounds by 

comparison with data from known compounds with different levels of confidence 

(Spicer; Salek; Steinbeck, 2017; Sumner et al., 2007). 

Basically, there are two main approaches under metabolomics studies, the 

targeted and untargeted methodologies. The targeted consists of sample analyses that 

the chemical compounds that will be studied are already known, and thus the 

extraction demands to be selective for the quantitative monitoring of these analytes. 

Thus, the instrumental set-up is optimized for maximum sensitivity at the specific m/z 

related to the metabolites of interest (Braga; Adamec, 2018; Canuto et al., 2018). In 

general, these techniques require the use of analytical patterns to uncover a potential 

mechanism of a disease or a primary study regarding genetic and epigenetic changes. 

Whereas, the untargeted aims at unknown components in a sample, and thus a more 

comprehensive extraction is necessary. The analytical instrument is optimized for a 

broad range of molecular masses (m/z), in typical untargeted metabolomics study 

ranging from 50–2200 m/z. An untargeted approach is commonly used to discover 

biomarkers, e.g. of diseases, pharmacological activity or toxicological property. For 

instance, biomarkers have been defined as a substance that indicates a normal 

biological or pathological process or pharmacological response (Chagas-paula; 

Oliveira; Faleiro, 2015; Chen et al., 2021; De Vos et al., 2007; Vinayavekhin; 

Saghatelian, 2010). 

 In particular, LC-HRMS-based untargeted metabolomics represents a modern 

approach in NP research, with great potential for field advancement by enhancing 

metabolite coverage (Chen et al., 2021). This approach typically employs data-

dependent acquisition (DDA) and data-independent acquisition (DIA) techniques, 

which are pivotal for acquiring both precursor (MS1) and fragment (MS2) ion data 

(Ebbels et al., 2023). DDA selects precursor ions based on their measured MS1 scan 

abundance, to acquire their corresponding MS2 spectra (Davies et al., 2021). In 

contrast, DIA indiscriminately fragments all detectable precursor ions within a larger 

mass range. Although DIA's methods, spectral libraries, and software are better 

established in the proteomics field (Lou; Shui, 2024), DIA development and 

applications in metabolomics are starting to rise (Alka et al., 2022; Fenaille et al., 2017; 

Katchborian-neto et al., 2024). The classic DIA methods are based on alternation 

between low and high-energy channels, to acquire both MS1 and MS2 scans, 



34 

 

respectively. The terminology varies across different vendors' MS platforms. For 

example, in Waters quadrupole-time of flight (QTOF) instruments it is referred to as 

MSE, while in Thermo Fisher Orbitrap™ instruments it is termed all-ion fragmentation 

(AIF) (Carnevale Neto et al., 2022; Wang; Yin; Zhu, 2019). 

Apart from the fact that DDA is the most popular method in metabolomics, DIA 

is an MS acquisition mode that offers exceptional sensitivity for characterizing complex 

metabolite samples, such as extracts of plants (Chagas-paula et al., 2015a; Li et al., 

2020; Van Der Laan et al., 2020). By systematically fragmenting precursor ions within 

a specific mass-to-charge ratio (m/z) range, DIA is particularly effective at identifying 

low-abundance metabolites, which are often overlooked by conventional DDA modes 

(Guo; Huan, 2020; Klont et al., 2020; Li et al., 2020). The analysis of processed data, 

independently of their modes of MS acquisition, usually is further followed by statistical 

analysis, which is suitable for the study of the correlation between variables of the 

study. The most common chemometrics methods used for metabolomics data are 

principal component analysis (PCA), hierarchical cluster analysis (HCA), partial least 

squares regression (PLS) and orthogonal partial least squares™ (OPLS). One of the 

main objectives of these multivariate analyses is to clean and reduce data 

dimensionality, in the case of the unsupervised analysis, and in the case of supervised 

methods to facilitate the visualization of the most discriminant compounds in the 

chemical composition of the investigated species (Jae-won; Heon, 2015; Katajamaa; 

Orešič, 2007; Worley; Powers, 2012; Yuliana et al., 2011). 

 Furthermore, molecular networking (MN) is another powerful computational 

approach tool employed in NP and metabolomics research, especially from the last 10 

to 15 years. It involves the clustering and visualization of LC-HRMS data based on the 

similarity of their MS/MS spectra (Aron et al., 2020; Bonde et al., 2021). This method 

enables an integrative approach to enhance data visualization and aid in the 

annotation of known compounds, as well as, the discovery of novel or structurally 

related compounds. It thus assist in the prioritization of unknown compounds of interest 

for further investigation. In MN, each mass spectrum from the dataset is represented 

as a node, and spectral similarities between nodes are calculated using algorithms 

such as the cosine similarity in the global natural product social molecular networking 

(GNPS). The GNPS is a data-driven online platform for the storage, analysis, consult 

of MS/MS spectra, and for sharing spectral data with the scientific community (Aron et 

al., 2020; Bonde et al., 2021; Demarque et al., 2020; Wang et al., 2016). 
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Thus, the use of MN under metabolomics studies allows the exploration of the 

chemical diversity within any complex dataset to elucidate the chemical structural 

relationships among the studied compounds, based on their fragmentation patterns. 

This approach has already proven to be particularly valuable in NP chemistry, where 

it has accelerated the discovery of new bioactive compounds from various sources, 

including plants, microbes, and marine organisms (Aron et al., 2020; Nothias et al., 

2020). Thus, with the integration of MS spectral information with online chemical 

databases, modern dereplication strategies, and MN together enable efficient chemical 

characterization and metabolomics analysis. Additionally, metabolomics studies can 

focus on the prioritization of compounds with unique structural features or/and potential 

biological activities (Aron et al., 2020; Bonde et al., 2021; Wang et al., 2016). Thus, 

metabolomics and computational approaches can be treated as an ally for the drug 

development process, and as a comprehensive strategy that allows profiling complex 

mixtures of myriad chemical components in crude NP extracts (Chagas-paula et al., 

2015a; Vinayavekhin; Saghatelian, 2010; Wolfender; Marti; Queiroz, 2010; Yuliana et 

al., 2011). 

Overall, metabolomics studies can aid faster new drug candidates by 

discovering active natural compounds for a high number of samples, through the 

integration of modern efficient analysis. The untargeted metabolomics approach is one 

of the latest omics technologies that has been successfully applied across a wide 

range of scientific research areas to analyze the global metabolome of organisms 

(Vinayavekhin; Saghatelian, 2010; Wolfender et al., 2019). Untargeted approaches 

could include obtaining metabolic fingerprints, which provide a semi-quantitative 

chemical profile of a sample under specific biological conditions, representing the full 

range of metabolites produced by an organism (Sumner et al., 2007; Van Der Kooy et 

al., 2009). This approach in metabolomics has several practical applications, for 

example, the consistent quality control of herbal materials through comparative 

metabolic profiling (Rao Gajula; Nanjappan, 2021). In drug discovery, metabolomics is 

increasingly being used to analyze plant products, trace their metabolic profiles, and 

statistically identify metabolites correlated with pharmacological activity. This approach 

also helps in identifying key metabolic pathways that can be targeted for drug 

development (Chagas-paula et al., 2015a; Vinayavekhin; Saghatelian, 2010; 

Wolfender; Marti; Queiroz, 2010).  
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Chapters II, III and IV describe the use of these computational techniques to 

study bioactive compounds of the metabolome of Ocotea plant species from Brazil. A 

chemical review of the current known biosynthetic aspects that led to the main 

chemical cores and isolated metabolites reported in the literature from Ocotea spp. is 

presented in Chapter I. The anti-inflammatory untargeted metabolomics study of 

Ocotea species is presented in Chapters II and III. In addition, the chemical diversity 

of these species was explored using MN and gas-phase fragmentation reactions, and 

it is presented in Chapter IV. The other scientific contributions developed during the 

time of this PhD is presented in Chapter V. 
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2 OBJECTIVES 

 

2.1 General objective 
 

  To investigate the anti-inflammatory bioactive markers and the chemical 

diversity of Ocotea species using metabolomics and computational approaches. 

 

2.2 Specified objectives  
 

1) Create a comprehensive database with all metabolites already identified in the 

Ocotea genus. 

2) Perform crude extract preparation of 60 different Ocotea spp. to cover a significant 

amount of species of the genus. 

3) Perform the acquisition of LC-HRMS–DIA data of each selected Ocotea (n=60) and 

the quality controls (QCs) for untargeted metabolomics analyses. 

4) Perform ex-vivo anti-inflammatory assays for PGE2 and LTB4 determination. 

5) Perform the acquisition of NMR data of promissory extracts to explore the chemical 

shifts most correlated with bioactivity for untargeted metabolomics analyses. 

6) Perform MS-Data processing and NMR-Data processing prior to statistical analysis.  

7) Perform Multivariate Statistical Analysis using computational tools to explore the 

bioactive markers. 

8) Perform Molecular networking of LC-HRMS–DIA data using computational tools to 

explore the chemical profile of the species. 

9) Perform characterization and annotation of the chemical profile and bioactive 

markers after Multivariate Statistical Analysis 

10) Develop anti-inflammatory prediction models based on metabolomics data for 

future Ocotea species bioprospecting studies.  



38 

 

3   CHAPTER I - (THEORETICAL REFERENCE) – BIOSYNTHETIC ASPECTS OF 

Ocotea METABOLOME  

 

The theoretical reference of this thesis is presented in a manuscript format. It 

includes the biosynthetic aspects and the chemical scaffolds of the Ocotea 

metabolome. Chapter I containing the review manuscript is separately provided as an 

attached material. 
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The Ocotea genus has been reported as one of the main potential sources of bioactive agents within the Lauraceae, and yet 

it remains insufficiently explored in academic literature. There are species of Ocotea recognized as essential oil-producing 

trees and others that are considered valuable and diverse sources of specialised metabolites, e.g. the O. duckei, O. gomezii, 

O. lanciofolia and others. Additionally, several Ocotea species have a long history of traditional medicinal use, and recent 

scientific studies have reinforced their potential as promissory sources of bioactive agents. However, to date, accurately 

identifying this genus remains a challenge, as it is easily confused with other genera within the Lauraceae, and botanically 

recognized as part of the multifaceted 'Ocotea complex', a phylogenetically unresolved group. This review addressed the 

most current knowledge on the chemical steps involved in the biosynthesis of the Ocotea metabolome. It highlighted the 

metabolic pathways that are chief to lead to the bioactive scaffolds of alkaloids, lignoids, flavonoids, and terpenoids. This 

article aims to be a reliable and updated source of information to guide further research in the fields of Natural Products 

Research, chemophenetics, chemoinformatics, metabolomics, and medicinal chemistry regarding the Ocotea genus, its 

chemical scaffolds, and its specialised metabolites.
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1. Introduction 
 

The Ocotea genus belongs to the Lauraceae Jussieu family, 
popularly known as the laurel family, which gathers more than 
3000 species distributed amongst 55 genera worldwide.1–4  
Lauraceae is amongst the top five largest in the world’s 
tropical and sub-tropical forests, and it is classified into the 
Magnoliid clade, as part of the order Laurales.5–8 Several 
Lauraceae plants are traditionally used in culinary, e.g. laurel 
(Laurus nobilis), which is used as a flavouring agent to season 
food in native American cooking recipes, and cinnamon 
(Cinnamomum verum), a famous spice used globally as a 
condiment in various culinary traditions, such as in the Asian 
recipes. Persea americana is a tree that produces one of the 
most important tropical fruits in the world, popularly known 
as avocado.6–10 In general, Lauraceae species are aromatic 
trees, of which several are recognised as natural sources of 
essential oils. Example species include Aniba rosaeodora, 
known in Brazil as “pau rosa”, and Ocotea catharinensis, 
known as “canela preta”, both popular for their high linalool 
oil content and their pleasant scents. Linalool is a 
monoterpenoid highly requested to enhance woody 
fragrances in several commercial products.8,11–13 Other 
species of Lauraceae are documented as popular medicines, 
which are known for their significant antioxidant, analgesic, 
anti-inflammatory, and antitumor properties.6,7,14 For 
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example, Cinnamomum camphora is a plant recognized by 
traditional medicine as a pain relief agent and is used to 
reduce local pain and itching. The plant is rich in the 
monoterpenoid camphor, which is the active main ingredient 
of commercially available topical analgesic ointments in the 
market.13,15–17 

Within the popular ethnomedicine of native South 
American people, traditional uses of several Ocotea species 
with their significant medicinal properties are of great value 
to local communities. O. quixos, a medicinal plant native to 
the Andes Mountains is used as an anaesthetic against pains 
in wounds and skin conditions as well as for the treatment of 
digestive problems and stomach aches.6,18 O. lancifolia and O. 
cymbarum were used against parasitic diseases caused by 
Plasmodium, Leishmania and Trypanosoma along with other 
medicinal properties, including antioxidant and anti-
inflammatory effects.6,19,20 The metabolites responsible for 
these biological activities are mainly alkaloids, lignoids, and 
terpenoids.6,18–20 

Natural Products (NP) research plays a key role in the 
discovery of new bioactive compounds, as it is a consensus 
that nature is one of the main accessible sources of novel 
metabolites.21–23 Thus, biodiversity protection is a 
consequence of bioprospecting natural resources, such as the 
plants from the Ocotea genus, which have been a target of 
academic investigations not only due to their ethnomedicinal 
properties but also due to their ecological, botanical, and 
economic relevance.5–8 Most Ocotea species are woody trees 
of high-quality desired timber, such as those from O. porosa, 
O. odorifera and O.catharinensis, amongst others, which 
humans have been using in carpentry and civil constructions 
for decades in South America.8,24 Unfortunately, illegal logging 
activity has led to several Ocotea species being currently 
endangered in Brazil.24–26 

Ocotea Aubl. is the largest genus of the Lauraceae family, 
compromising more than 400 species.1 To date, only 113 
species (~28.5%) have been investigated for their chemical 
content either for classical or modern NP studies, including 
our recent Ocotea metabolic profiling study (Supplementary 
Table S1, S1.1, and S1.2, respectively, available to download 
at Zenodo's link- https://doi.org/10.5281/zenodo.1067).27 
The majority of the Ocotea species are neotropical species 
found mainly in Central and South America. However, Ocotea 
species are also found in Western and Southern Africa. It also 
occurs in Macaronesia, Madagascar, and Comoro islands.1,28,29 
In South America, the genus Ocotea is the third most common 
in the Amazon biome, which offers the largest biodiversity 
hotspot in the world. In the main Brazilian biomes: Amazon 
rainforest, Atlantic forest, Cerrado, Caatinga and Pampas, a 
total of 176 species have been registered, of which 112 are 
considered endemic.30  At least an estimate of 160 species 
remains yet to be found and taxonomically identified, and 
then phytochemically investigated.31–33  

Botanically, Ocotea is considered an intriguing genus that 
at present is classified as belonging to the Perseeae-Laureae 
clade. Phylogenetically and based on DNA sequencing 
markers and morphological features, Ocotea belongs to the 
Ocotea complex sensu, which currently includes about 950 
species of distinct 17 genera.1,4,32,34,35 The Ocotea complex 
raises great interest to NP chemists due to the diverse 
biological activities such as anti-inflammatory, antibacterial, 
antiviral, or insecticidal that are associated with the chemical 

composition of distinct plants. However, when DNA material 
is not available for comparison, based on only morphological 
characteristics, Ocotea species are a challenge to 
taxonomically identify and can be misclassified with other 
species from other genera such as Nectandra, Persea, Licaria, 
Litsea or many others from within the Lauraceae family. Also, 
phylogenetic studies on the genus still present gaps 
concerning their taxonomic classification, as some species can 
overlap morphologically with other genera from the Ocotea 
complex. Thus,  Ocotea is considered one of the most 
challenging genera for species identification within the 
Lauraceae family.4,32,34,36,37 Synthetic systematics including 
chemistry and molecular biology can aid in the taxonomic 
classification of known Ocotea species, and despite the great 
economic interest in the genus, and relevant published works 
in the literature, there is still a lack of phytochemical and 
bioactivity studies.6,8,10,32 
 
1.1 Biosynthesis, chemical aspects and bioactivities 
 

The first academic medical report on Ocotea was 
published in the medical journal, The Lancet, in 1830 
reporting the therapeutic valuable oil of an Ocotea tree native 
to South America. Various parts of the tree were used to 
relieve spasmodic complaints, convulsions, and cramps. It was 
also reported to be effective against acute and chronic 
inflammation in the treatment of cutaneous eruption or 
rheumatic pain.38 The first published data regarding the 
chemical aspects of Ocotea oil was from 1844. It was coined 
in the literature as the “oil of laurel turpentine”.39 Likewise, 
the first non-volatile compounds reported for Ocotea were 
lignans, including sesamin (pseudocubebin), which was 
isolated in 1916 from the bark of O. usambarensis, a 
traditional medicinal plant used by African natives in the 
Kimboza Forest Reserve of Tanzania.40,41 

 In the last seventy years, and especially in the current 21st 
century, an increased number of scientific papers in the 
literature have demonstrated that Ocotea is a promissory 
bioactive genus with relevant antimicrobial, larvicidal, 
anaesthetic, anti-inflammatory, and antitumoral properties. 
6,32,42–44 Our research group has confirmed the significant anti-
inflammatory activity by dual inhibition of cyclooxygenase 
(COX) and lipoxygenase (LOX) pathways for reticuline, a 
benzylisoquinoline congener, which was isolated from the 
crude extract of O. odorifera, and also for the new aporphine, 
named diospiriofoline isolated from the O. diospyrifolia.45,46 
Therefore, Ocotea species stand as an interesting source of 
potential therapeutic compounds.28,29 

Concerning its phytochemistry, the genus Ocotea is 
perceived to be an extremely diverse genus, with a high 
degree of chemical diversity along with its specialised 
metabolites. Alkaloids are known as the most frequently 
occurring chemical class encountered in the genus. A series of 
different subclasses are observed such as a wide range of 
aporphines, and also benzylisoquinolines, and less common 
subclasses, such as the morphinans and phenanthrenes.6,32,47  
Succeeding the alkaloids, the lignoids and flavonoids are the 
most commonly described NP classes in the Ocotea genus, 
which will be covered in this review. The metabolome of 
Ocotea also includes volatile aldehydes, terpenes, terpenoids 
and phenylpropanoids, and other specialised metabolites, 
which are less commonly found, such as coumarins, tannins, 
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polyketides, saponins, glycosides, benzopyrans and steroids 
(Supplementary Table S2-S7, available to download at 
Zenodo's link- https://doi.org/10.5281/zenodo.1067).6,31,32,48–

50 
This considerable metabolic variability and diversity are 

corroborated by the fact that specialised metabolites in 
medicinal plants are biosynthesized by a combination of 
biosynthetic building blocks, which could be of the same type, 
or by a mixture of different building blocks. The chemical 
reactions that occur among these blocks are mediated 
through an abundant number of specific enzymes and 
cofactors that are responsible for the existence of diversified 
chemical pathways in plant biosynthesis.  

As mentioned, the most shared alkaloid classes in the 
Ocotea genus consist of isoquinoline derivatives with 
aporphines, making up the majority. These classes have been 
considered some of the most important biomarkers of the 
genus and the main source of bioactivities, such as anti-
inflammatory, antimicrobial, and antiparasitic.43,51,52 The 
combination of shikimate and pentose-erythrose-phosphate 
building blocks is responsible for the chemical core variations 
of these alkaloids (Fig. 1). The lignoids and essential oils can 
be also derived from these shared pathways.32,53,54 

With the aid of modern analytical molecular methods, 
specialised metabolites can be chemically discriminated in a 
given taxon. This area has been recently named 
chemophenetics. This approach can be seen as a modern 
extension of chemotaxonomy, which traditionally involves the 
classification of plants and other organisms based on their 
chemical composition, particularly specialised metabolites, 
that are unique to specific groups.32,55,56 Modern analytical 
instrumentation can support chemical studies of plant 
biosynthesis, and together with metabolomics investigations 
can provide a more accurate characterization of clades. The 
association with DNA sequencing and gene data can also help 
reach more integrative and robust data to solve phylogenetic 
issues. In addition, metabolic fingerprints can enable the 
identification of chemical markers within the Ocotea genus, 
e.g., metabolites from the classes of morphinans or O-
glycosylated flavonoids can be used for metabolic fingerprint 
discrimination. Even the flavone:flavonol ratio can assist in 
the evolutionary lineage pattern studies, and once they are 
linked to the species specialization index, their chemical 
presence can be associated with a genetic modification during 
the evolution of these plants. The consequence is a more 
evolved metabolome of higher chemical complexity that can 
be differentiated using metabolomics strategies.32,55,57,58 A 
current application can include the use of the metabolic 
fingerprint content to avoid taxonomic errors in laboratories 
and industry due to morphologically similar botanical 
features.32,55,56  In particular, metabolomics investigation can 
support a faster discovery of new bioactive metabolites by 
high throughput screenings. Also, new potential bioactivities 
can come across for known or unknown metabolites.32,59–62 

Thus, a robust chemical database associated with the main 
biosynthetic pathways of the Ocotea metabolome can ease 
the recognition of new potential biomarkers and acquire more 
accurate and faster species differentiation. In addition, 
systematically describing respective chemical scaffolds can 
increase accessibility to an ample Ocotea chemical 
database.63,64 From our knowledge, this is the most 
comprehensive chemical review of the Ocotea genus, which 

includes more than 900 chemical structures in a curated 
database (Available at Zenodo's link- 
https://doi.org/10.5281/zenodo.1067). This review aims to be 
an updated version of the current knowledge of the chemical 
and biosynthetic characteristics of the Ocotea metabolome to 
promote insights and to orientate further studies targeting 
Ocotea species. It is intended to be easy access to chemical 
cores and unique metabolites, integrated with the current 
biosynthetic knowledge. The different biosynthetic chemical 
classes were separately discussed in sections 3 (alkaloids), 4 
(lignoids), 5 (flavonoids), and 6 (terpenoids). 

 

2. Chemical database construction (OcoteaDB) 
 

 

Fig. 1 The combination of the biosynthetic building blocks of the 
shikimate and the pentose-erythrose-phosphate pathway, derived from 
the aromatic amino acid tyrosine (L-Tyr), leading to the biosynthesis of the 
benzyltetraisoquinoline and aporphines alkaloids. 

https://doi.org/10.5281/zenodo.1067
https://doi.org/10.5281/zenodo.1067


ARTICLE Journal Name 

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

The Ocotea chemical database (OcoteaDB) was put 
together using 928 metabolites obtained from the literature 
and NP online databases, gathering them together according 
to their respective NP classes (Supplementary Table S2-S7, 
available to download at Zenodo's link- 
https://doi.org/10.5281/zenodo.1067). The bibliographic 
databases used for the research included: PubMed, Web of 
Science, ScienceDirect, and the Google Scholar platforms. 
Regarding chemical databases (DB), it included: DNP© 
(Dictionary of Natural Products), KNApSAcK (A 
Comprehensive Species Metabolites Relationship Database), 
and NuBBE (Nuclei of Bioassays, Ecophysiology and 
Biosynthesis of Natural Products Database).  The keywords 
“Ocotea”, “phytochemistry of Ocotea”, “metabolites of 
Ocotea”, “compounds of Ocotea”, “molecules of Ocotea”, 
“essential oils of Ocotea”, “secondary metabolism of Ocotea”, 
“chemosystematics of Ocotea”, and “metabolomics of 
Ocotea” were used to search for published articles between 
the years of 1830 and 2024.  
 OcoteaDB included chemical and/or trivial names, 
molecular formula, monoisotopic mass, metabolite core, 
biosynthetic class, SMILES, Ocotea species, and literature 
citation. The chemical structures were redrawn from original 
articles and downloaded in .mol format from Chemspider®, 
Pubchem®, and J-GLOBAL® online databases when available. 
The structures were drawn using the software ChemDraw 
ultra 12.0 (Perkin Elmer Informatics, Cambridge, England) for 
chemical figures generation. Data visualization was 
performed using various Python libraries accessed through 
the Google Colab online cloud service platform 
(https://colab.research.google.com/). Pandas was employed 
for data manipulation, while NumPy supported numerical 
calculations and Matplotlib graph generation.  

 

3. Ocotea spp. metabolites 
 
Most studies on Ocotea species in the literature concern 

botanical, phylogenetics, phytochemistry, and biological 
activity investigations. From the chemical point of view, 
alkaloids, lignoids and terpenoids are the main representative 
classes, found in monoecious and dioecious species. 
Flavonoids are also found, although in a smaller number of 
species.6,10,27,32,47,54  However, chemical literature is scarce 
compared to the number of the already known Ocotea 
species.6,32 Even though notable discoveries were made by 
Otto Gottlieb and collaborators between 1960-1980, it is only 
recently that the chemical research interest has shifted back 
to the genus, with an increased number of relevant 
publications in the last 15 years.6,32,35,65 

3.1 Ocotea alkaloids: a biosynthetic approach 

The main alkaloid class produced by Ocotea is the 
aporphines. These types of alkaloids are not exclusive to 
Lauraceae, as they also occur in other plant families such as 
Magnoliaceae, Menispermaceae, Papaveraceae, 
Ranunculaceae, Hernandiaceae, and Annonaceae.53,66 
Aporphine alkaloids are one of the largest groups of 
isoquinoline alkaloid derivatives, with more than 500 known 
representatives in the literature. The biosynthetic pathway of 
aporphines is greatly dependent on nitrogen-based sources, 
especially the amino acid precursor tyrosine (L-Tyr). Despite 

the chemical diversity and distribution of this chemical class, 
there is still a small amount of robust data regarding their 
metabolic biosynthetic pathways in the literature.53,54,67 

It has been established that in plant metabolism, L-Tyr 
undergoes modification through tyrosine hydroxylase 
enzymes (E1), resulting in the addition of a second hydroxyl 
group to the ortho position of the phenol group in the 
aromatic moiety. It allows the conversion of the amino acid 
into L-DOPA (1), which is the first step leading to the 
biosynthesis of the aporphine core. The next step includes 
dopamine (2) production through decarboxylation in the 
presence of DOPA decarboxylase (E2). In parallel, the L-Tyr 
also undergoes transamination by tyrosine aminotransferase 
(E3) and PLP coenzyme, giving rise to 4-hydroxyphenyl-
pyruvic acid (3) that is also decarboxylated to 4-
hydroxyphenyl-acetaldehyde (4). Subsequently, through a 
Pictet-Spengler mechanism, a mannich-like reaction takes 
place to join precursors 2 and 4 by amino alkylation to form 
(S)-norcoclaurine (5), the primary precursor for the 
benzylisoquinoline class of compounds. Methylation of 5 
yields (S)-coclaurine (6). This step is mediated via 
norcoclaurine 6-O-methyltransferase (E4) and SAM (S-
adenosyl methionine), a common cosubstrate involved in the 
stereoselective mechanism reaction of methyl group transfers 
by SN2-type nucleophilic substitution.  Then, precursor 6 is 
catalysed to (S)-N-methylcoclaurine (7) by coclaurine N-
methyltransferase (E5). Following the pathway, 7 can be 
hydroxylated at position 3’ of the benzyl ring to form the 
tetrahydroxy substituted pattern in the presence of the 
enzyme N-methylcoclaurine 3′-hydroxylase (E6)  producing 
the (S)-3′-hydroxy-N-methylcoclaurine (8). In addition, the 
hydroxyl group at position 4’ can be methylated by 3′-
hydroxy-N-methylcoclaurine-4′-O-methyltransferase (E7)/ 
SAM to afford the alkaloid (S)-reticuline (9), which is one of 
the main benzylisoquinoline alkaloids found in the Ocotea 
genus. For instance, 9 has been isolated from the crude 
extracts of several species, such as O. lancifolia, O. caparrari, 
O. odorifera, O. caudata and others.6,45,53 The biosynthetic 
route is summarized in Fig. 2A. 

Although Ocotea does produce R isomers as well,45,46,53 
herein, the dominant presence of S isomers in the Ocotea 
genus has been described for benzyltetraisoquinoline 
alkaloids. Thus, as E4, E5, E6 and E7 are stereoselective 
enzymes, it is expected that the biosynthesis of either R or S 
stereoisomers after the Mannich reaction to be dependent on 
the configuration of the precursor. As a consequence, 
derivatives 5, 6, 7, 8 and 9 could assume either of both isomer  
forms in the Ocotea metabolism, considering they might 
retain the stereochemistry of their initial precursor 
throughout their biosynthetic pathway. This is an appropriate 
piece of information contributing to Ocotea species 
differentiation and phylogenetic studies. For instance, our 
research group isolated the (6R)-reticuline (14) from O. 
diospyrifolia, while (6S)-reticuline has also been described 
from O. odorifera.45,46 Different (R)-alkaloid isomers were also 
reported from other Ocotea species, such as those isolated 
from O. caesia, O. lancifolia, O. velloziana and others.20,68,69 
Therefore, these findings corroborate the significance of 
chemophenetics and biosynthetic studies, which to date are 
poorly described in the literature and therefore, can be 
further explored by using specific enzymes and substances  
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with atom labelling, to increase and confirm the assumptions 
and observations highlighted in this review.46,68,70 

Recently, (S)-reticuline (9) was successfully obtained in a 
transgenic system by using genetic engineering to incorporate 
genes from Coptis japonica (Ranunculaceae) into Escherichia 
coli host cells. The bacterial encoding gene of monoamine 
oxidase enzymes (MAO) converted the supplied dopamine to 
the culture into 3,4-dihydroxyphenyl-acetaldehyde (10). 
Subsequently, consolidating dopamine with 10 by the action 
of norcoclaurine synthase (E8), (S)-norlaudanosoline (11) 
could be formed. The E. coli host system was inherently 
responsible for the presence of the methylating agent SAM 
while C. japonica genes provided the enzymes for the ongoing 
biosynthetic pathways (E4, E5, and E7).53,71  Therefore, this 
engineered system is an alternative pathway to obtain 9 via 
the formation of (S)-norlaudanosoline (11) (Fig. 2B).  
 Furthermore, (S)-reticuline (9) can undergo phenolic 
oxidative coupling, which plays a significant role in modifying 
the basic benzyltetrahydroisoquinoline skeleton to yield 
several other types of alkaloids, such as aporphines and 
morphinan derivatives. While the former is widespread in the 
Ocotea genus, the latter is also present, but only in fewer 
Ocotea species.47,53,72 The aporphines, (S)-corytuberine (12) 
and (S)-isoboldine (13) have been found in different Ocotea 
species (n= 8) in literature, such as O. caesia, O. caudata, and 
O.  lancifolia, as well as in other Lauraceae genera.6,32,47,53 
Thus, regarding the biosynthetic aspects, the first reaction 
step consists of the oxidation at the unprotected hydroxyl 
group of the aromatic rings to give the intermediate ketones 
(Fig. 3A). Further, electron oxidation can result in resonance-
stabilized radicals that cause the oxidative coupling at position 
8 and position 2’ or 5’ of the benzylisoquinoline aromatic ring, 
as the C-C bond can rotate freely. In addition, a cytochrome P-
450-dependent enzyme is necessary (e.g. CYP80G2) to allow 
oxidative coupling catalysis.53  

Literature data supports the change in the absolute 
configuration of 9 to its R enantiomer (14) that could be 
achieved by an oxidation-reduction process through the 
formation of 1,2-dehydroreticulinium cation intermediate 
(15). The R enantiomer is formed due to oxidation that turns 
it up in a planar iminium cation enabling the formation 14. 
These steps allow the change in the stereochemistry through 
the action of two coordinated enzymes: 1,2-dehydroreticuline 
synthase (E9)/NADP+, which causes the first heterocyclic 
nitrogen oxidation, and 1,2-    dehydroreticuline reductase 
(E10)/NADPH, reducing the ion to form the enantiomeric 
congener 14 (Fig. 3B).53,73 

As previously discussed, some L-Tyr-derived alkaloids can 
assume the R configuration, e.g. in the classes of opioids and 
morphinans that are predominantly biosynthetically 
derivatised from (R)-reticuline (14) stereoisomer.53 As 
mentioned before, both R and S isomers could be found in the 
genus Ocotea, including benzyltetratisoquinoline precursors 
such as 6, 9, and 14, but also for several aporphines and 
morphinans, that are biosynthesized farther in the 
biosynthetic pathway.53,73 Thus, a systematic analysis of this 
biosynthetic pathway differentiation is a piece of useful 
information for further studies on lineage evolution. 

Therefore, 14 is the main precursor for the morphinan 
class of alkaloids, which gives rise to important classic 
alkaloids such as codeine and morphine then later on 
salutaridine (16) and pallidine (17). Initially, one-electron 

Fig. 2 Biosynthetic pathway of benzylisoquinoline and the alkaloid (S)-
reticuline. A – (S)-reticuline produced via norcoclaurine. B- (S)-reticuline 
produced via norlaudanosoline. 
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oxidation takes place in the two aromatic rings of a phenolic 
group forming ketone intermediates while the resonance-
stabilized diradical allows an ortho coupling to the 
intermediate ketone in the isoquinoline moiety at position 7, 
and also para coupling to the ketone benzyl substituent at the 
5’ position. Biosynthetically these reactions are mediated via 
coupling enzyme synthases that are cytochrome P450-
dependent monooxygenase, like salutaridine synthase (E11), 
responsible for giving rise to the dienones morphinan 
alkaloids 16 and 17 (Fig. 3C). Even though Ocotea species are 
not known to be an opioid producer, the morphinan alkaloid 
17 has already been isolated from O. acutangula, O. acutifolia, 
and O. lancifolia, while 16 is commonly found in the 
Papaveraceae family.6,53,73 

Moreover, the CYP complex enzyme (Cyp80A1) can also 
catalyse the C-O intermolecular phenol-coupling reaction 
between benzylisoquinoline cores to afford a dimer class of 
alkaloids, the bisbenzylisoquinolines. Therefore, alkaloid 14 is 
also their main gateway precursor. Bisbenzylisoquinolines 
occur in plant families such as Lauraceae, Menispermaceae, 
Berberidaceae, and Ranunculaceae. This class of dimer 
alkaloids is not characteristic of the Ocotea genus and was 
only found in three Ocotea species, which include O. rodiaei, 
O. rodiei and O. venenosa.6,32   

Bisbenzylisoquinoline alkaloids consist of two 
benzyltetrahydroisoquinolines that are linked together 
through intramolecular bonds, which is a result of the 
phenolic oxidative coupling mechanism and the formation of 
resonance-stabilized radicals.53,74,75 Several different 
benzylisoquinoline precursors can undergo one-electron 
oxidations at the free phenol groups within each aromatic 
ring. Consequently, these oxidized groups can act as 
diradicals, coupling to initiate either an ether or a carbon-
carbon (C-C) bridge between different precursors, thereby 
giving rise to a vast diversity of bisbenzylisoquinoline dimers. 
Bisbenzylisoquinolines, such as tetrandrine (18) and thalmine 
(19) can be found in the Ocotea genus (Fig. 4), and could be 
potential specific biomarkers for certain Ocotea species. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 Fig. 3  A- Aporphine alkaloids (S)-isoboldine and (S)-corytuberine is 

produced by phenolic oxidative coupling of the (S)-reticuline precursor. B- 

The oxidation-reduction process through the intermediate 1,2-

dehydroreticulinium cation to convert (S)-reticuline to (R)-reticuline. C- 

(R)-reticuline precursor yields salutaridine and pallidine morphinan 

scaffolds through oxidative coupling. 
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3.2 Ocotea spp. alkaloid profile 

A comprehensive review with multivariate statistical 
analysis of the data by Antonio et al. (2020) claimed that 
approximately less than 10% of Ocotea species have been 
chemically evaluated for their alkaloidal content.32 Their study 
used 31 alkaloid-producing Ocotea species as extensively 
described earlier by Silva Teles et al. (2019).68 Herein, the 
present review updated this number to 41 Ocotea species 
reported to date for those eliciting biosynthetic pathways for 
alkaloid production. Thus, the alkaloid class stand as the most 
prevalent class amongst the investigated Ocotea species with 

174 unique reported metabolites. This number was increased 
to 60 Ocotea species by our recent publication applying 
modern analytical techniques, in which most of the Ocotea sp. 
were evaluated for the first time.27  (Supplementary Table S2 
and S2.1 respectively, available online at Zenodo's link- 
https://doi.org/10.5281/zenodo.1067). 

Regarding only phytochemical and NP isolation studies, 
the aporphine alkaloids extend as the most common alkaloid 
source reported in Ocotea species with 107 representative 
structures in the literature (chemical cores in Fig 5). Of the 41 
alkaloid-producing species, 35 (~85.4%) had the aporphine 
core described in at least one study (cores C2-C3). Moreover, 
beyond the aporphines, classes such as their precursors or 
derivatives that included benzylisoquinoline, 
bisbenzylisoquinoline, proaporphine, phenanthrene and 
morphinans, were reported in less number of Ocotea species. 
Thus, 26 (~63.4%) species have reported one of these latter 
cores in at least one phytochemical study, with a total of 34 
unique metabolites (cores C1, C4-C6). Even less common 
chemical cores have also been reported, e.g. protoberberine 
(core C7) was described in O. duckei, while aminoaporphine 
(core C8) was found in O. variabilis and O. glaziovii. In 
addition, the indole core (C9) was reported in O. minarum, 
and the pyrrolidine core (C10) was found in O. caudata, 
whereas the isoquinoline core (C11) was isolated from O. 
diospyrifolia.6,46,76,77 

Aporphine is a relevant alkaloid class for evolutionary 
lineages in Lauraceae and is considered a biomarker for 
discriminating Ocotea as a basal genus from others in the 
family.32  For example, the various patterns of the substituted 
aporphines can aid in the differentiation of Ocotea from 
Cinnamomum, and even from other genera that could be 
morphologically similar and also phylogenetically placed at 
the unresolved Ocotea complex sensu.1,32 Thus, an alkaloid 
fingerprint profile including aporphine patterns can aid and 
support phylogenetic studies of Lauraceae, once gene 
sequence could be significant key information to better 
understand alkaloid expression.32,53 However, within the 
Ocotea genus, only specific substituted aporphines can be 
significant differential biomarkers, especially those with high 
levels of oxidation, e.g. 3-hydroxydicentrine or 
dehydroocoteine.32 This is expected as the majority of the 
Ocotea sp. are aporphine producers while sharing the same 
biosynthetic pathway. Thus, besides its potential for genera 
differentiation in the Ocotea complex, other metabolite 
classes could be utilised as a more efficient biomarker for a 
chemosystematic approach in the Ocotea genus, such as for 
some specialised lignans (item 4). 

Phylogenetically and evolutionary classification states that 
the Ocotea species produces majoritarian aporphines as being 
part of the Old World, and thus it is assumed that they are 
more basal in the Lauraceae lineage.1,32 Instead, Ocotea 
species that produce more evolved chemical structures, such 
as the morphinan alkaloids could be considered from the New 
World, as they evolved from specialised biosynthetic 
pathways, such as in O. acutangula, from which six different 
morphinan alkaloids were isolated.1,6,32,54,76,78 Only five 
Ocotea species (O. acutangula, O. acutifolia, O. brachybotra, 
O. caudata and O. lancifolia) have been described in the 
literature as morphinan producers. 

Furthermore, chemometrics and metabolomics studies 
can aid in the search for specific biomarkers and alkaloidal 

Fig. 5 The biosynthesis of bisbenzylisoquinolines via oxidative diradical 

formation and coupling of two benzylisoquinoline precursors to yield 

tetandrine (A) and thalmine (B) alkaloids. 
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fingerprints to facilitate species differentiation. For example, 
plants from Licaria and Nectandra genera might be also 
taxonomically misunderstood with the Ocotea genus due to 
their botanical similarity in terms of their leaf and flower 
morphologies.4,32,34  Some of these species can share the same 
stomatal surface shape, which makes morphological 
differentiation difficult. Thus, plants such as those from the 
Ocotea genus can be more easily differentiated by their 
chemical profiles and through biomarker comparison, when 
aided with chemometric analysis of their secondary 
metabolites. The chemical profile data together with 
respective morphological features along with phylogenetic 
studies can avoid inaccurate taxonomic assumptions and 
incorrect genus identifications.1,4,32,79 

Regarding the chemistry and bioactivity, as mentioned 
before, the classical chemical skeleton of the aporphine 
alkaloid class occurs when the C2' of the benzylisoquinoline 
nucleus is attached to the C8 position. This chemical 
modification confers to this NP class substantial structural 
diversity and a broad variety of pharmacological activities. As 
a consequence, aporphine cores exhibit diverse chemical 
possibilities of -R substituents ranging from different positions 
as methoxy, methylenedioxy and hydroxy substituents 
attached to the aromatic ring.32,47,53,54 This review describes 
all substituted aporphine cores within Ocotea reported in the 
literature. It included derivative classes of oxoaporphine, 
proaporphine, O-aporphine, dihydroaporphine, 
didehydroaporphine, and phenanthrene.  

To date, approximately 200 different alkaloids (174 
distinct alkaloids of different subclasses found exclusively in 
Ocotea species) have been isolated from the Ocotea genus. 
Fig. 5-6 describes all known alkaloid chemical cores (C1-C11). 
The detailed identity of the chemical compounds including 
monoisotopic mass, MF, chemical name, SMILES-ID, and 
Ocotea species from which the metabolite was isolated, is 
presented in Supplementary Tables S2-S7, available at 
Zenodo's link- https://doi.org/10.5281/zenodo.1067). 

Furthermore, the aporphine alkaloids (C2.1-2.6; C3.1-3.2), 
from different Ocotea species are reported with pronounced 
anti-inflammatory and antineoplastic properties. The 
aporphine alkaloid boldine (C2.1), for example, those found in 
O. lancifolia, O. spixiana and in other Ocotea and Lauraceae 
species, can induce antipyretic effects that can be due to the 
effect on the COX pathway, leading to inhibition of 
prostaglandins.80,81 Likewise, the aporphine alkaloid glaucine, 
which occurred in different Ocotea sp., such as the O. 
vellosiana and the O. macrophylla, exhibited interesting 
anticancer properties by suppressing nuclear factor kappa-
activated B cells (NF-κB) activity. In addition, the glaucine 
congener has also demonstrated a reduction in metastatic 
breast cancer cell invasion.82   

The aporphine alkaloid dicentrine (C2.1), and the 
oxoaporphine dicentrinone (C3.1), demonstrated a broad 
spectrum of biological activities, e.g. inhibition of 
topoisomerase I and II enzymes, which are relevant 
therapeutic targets of current chemotherapy of protocols. In 
addition, more recent data has confirmed significant in vivo 
antinociceptive effects of dicentrine. The mechanism of action 
included attenuating mechanical and cold hypersensitivity in 
inflammatory conditions via activation of the transient 
receptor potential TRPA1.83 Dicentrinone has also shown 
potent antiparasitic activity against trypomastigote forms of     

Trypanosoma cruzi, and significant changes in lipid biological 
surfaces with reduced mammalian cytotoxicity.52,84  

Regarding the benzylisoquinoline alkaloids with the  C1a 
core (Fig. 6),  R-coclaurine demonstrated a highly pronounced 
anti-HIV activity with an EC50 value of 0.8 μg/mL.85,86 In 
addition, promising butyrylcholinesterase inhibition activities 
were shown for other two benzylisoquinoline alkaloids,  
reticuline with an IC50 value of 33.6 ± 3.0 μM) and N-
methylcoclaurine with an IC50 value of 15.0 ± 1.4 μM.87 Our 
research group has confirmed the anti-inflammatory activity 
of the O. odorifera leaf extracts validating the 
ethnopharmacological use of the plant decoction as a 
phytomedicine. The leaf decoction is rich in reticuline,  which 
after alkaloid isolation and evaluation, exhibited a significant 
anti-oedematogenic effect together with neutrophil 
recruitment inhibition in a dose-dependent manner, 
suggesting that both COX and LOX inflammatory pathways 
were inhibited.45,88 

Benzylisoquinolines and aporphinoids are the major 
classes isolated in Ocotea (n= 39 species, ~95.1%, 167 
metabolites), and can be considered natural bioactive agents, 
encountered in several different Ocotea species, e.g. the O. 
puberula, O. vellosiana, O. acutifolia, O. macropoda, O. 
leucoxylon, O. discolor, O. caesia, O. odorifera, O. diospyrifolia, 
O. lancifolia, O. brachybotra and several other Ocotea sp. 
(Supplementary Table S2 and S2.1, available for download at 
Zenodo's link- https://doi.org/10.5281/zenodo.1067). 

 

 

Fig. 5  Chemical diveristy of alkaloids in the Ocotea genus expressed by 
the number of different chemical structures reported in the literature for 
each subclass. 
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Fig. 6  Alkaloids chemical scaffolds found in Ocotea species: (C1.1a) benzylisoquinoline, (C1.1b) oxobenzylisoquinoline, (C1.1c) α-benzylisoquinoline,  

(C1.2) 8.7’ 12.11’ bisbenzylisoquinoline I, (C1.3) 8.7’ 12.11’ bisbenzylisoquinoline II, (C1.4) 8.7’ 12.11’ bisbenzylisoquinoline III, (C1.5) 8.7’ 11.11’ 

bisbenzylisoquinoline bisbenzylisoquinoline, (C2.1) aporphine, (C2.2) dihydroaporphine, (C2.3) didehydroaporphine, (C3.1) oxo-aporphine, (C3.2) 

didehydroxo-aporphine, (C4) pro-aporphine, (C5) phenanthrene, (C6.1) morphinan-7-one, (C6.2) dihydromorphinan-7-one, (C6.3) morphinan-6-one, (C7) 

protoberberine, (C8*) aminoaporphine, (C9*) indole, (C10*) pyrrolidine, and (C11*) isoquinoline alkaloids from Ocotea genus. *Only one study in literature 

have evidenced this chemical core for the respective Ocotea sp. evaluated. 
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4 Ocotea spp. metabolites: lignoids 

4.1 Ocotea lignoids: a biosynthetic approach 

 Since the highly bioactive lignan, podophyllotoxin was 
identified back in 1933, the biosynthetic pathways of lignoids have 
been thoroughly elucidated, establishing their main bioactive 
scaffolds. Podophyllotoxin is an 8-8',2-7'aryltetralin lignan lactone 
widely described for its antiviral and especially for its anticancer 
properties. It was first isolated from the Himalayan rhizomes and 
shrub of Podophyllum, a member of the Berberidaceae family, in 
India. The anticancer properties of podophyllotoxin derive from its 
ability to inhibit DNA replication. To date, semi-synthetic 
derivatives of podophyllotoxin, such as teniposide and etoposide, 
have been approved for the pharmaceutical market. These drugs 
block cell division by inhibiting topoisomerase II enzymes and are 
favoured in several current chemotherapy protocols due to their 
fewer side effects compared to natural lignan.48,89,90  Consequently, 
the lignan derivatives of podophyllotoxin turned out to be a target 
of a wide range of academic investigations in the last few years. 
Additionally, the biosynthetic pathway that leads to this bioactive 
lactone lignan scaffold has been identified in other plant families, 
including Lauraceae, Cupressaceae, and Linaceae. The 8-8',2-

7'aryltetralin lignan metabolite ()-morelensin, isolated from O. 
macrophylla, comprises only two methoxy groups in its aromatic 
moiety, as opposed to three in podophyllotoxin, and thus 
originating from the same biosynthetic mechanisms and 
routes.53,90–92 

Regarding the chemical cores of lignoids, their general 
structure can be classified based on the character of the carbon-
carbon (C-C) or carbon-oxygen-carbon (C-O-C) bond 
(oxyneolignans), which are responsible for joining the two 
phenylpropane units. Lignoid compounds are generally referred to 
as phenylpropanoid dimers, divided into three main classes: 
lignans, neolignans, and oxyneolignans.32,48,89 Among Ocotea 
species reported in the phytochemical studies in literature, ~58.8% 
produce lignans, while ~88.2% have at least one neolignan in their 
metabolome. Oxyneolignans are less common with only ~11.7% of 
the reported species being known for producing it, such as O. 
cymosa and O. costulatum.  

 Lignoids represent the second most common class of 
secondary metabolites in the Ocotea genus, characterized in 17 
different Ocotea sp.32,93,94  Our recent publication, which employed 
modern analytical techniques, increased the number of known 
Ocotea species able to elicit lignoids biosynthesis for 26 
(Supplementary Table S3 and S3.1, available at Zenodo's link- 
https://doi.org/10.5281/zenodo.1067).27 As mentioned before, 
that recent study marked the first evaluation of several Ocotea 
species that have never been evaluated before. 

Moreover, Fig. 7 illustrates Haworth’s definition (1937) of a 
lignan, which is still recognized by the academic community today. 
This definition encompasses C6–C3 units connected at the 8-8’ (β–
β' linked) positions, with possible variations at the 7-7’, 9-9’, and 2-
7’ positions. Linkages differing from this pattern, such as 3-3’, 7-1’, 
7-3’, 8-1', 8-3’-linked, or ether linkages like 8-O-4', are classified as 
neolignans.48,53,89 Later, Gottlieb (1974) suggested that the 
classification can be based on their respective precursors, leading 
to a better understanding of lignoid biosynthesis. Thus, the basic 
lignoid core is formed through an oxidative coupling of 
phenylpropanoids, yet the plant’s metabolism shows a degree of 
biosynthetic independence, resulting in various congeners.  The 
term ‘lignans’ should be retained for derivatives condensed by 
oxidative coupling of cinnamyl alcohol and/or cinnamic acid (20) 

(8-8’ linked). While neolignans are derived by condensation and 
oxidative coupling between propenylphenols and allylphenols (Fig. 
8). Nevertheless, the recent lignan handbook published by 
Newman and collaborators (2022) suggested a rational need for an 
essential revision of phenylpropanoid (C6-C3) lignan and neolignan 
nomenclatures. They recommended that the original definition by 
Haworth could conveniently suit both lignan and neolignan 
chemical structures. Previously, Gottlieb (1984) had indicated a 
similar perspective as well, but at that time, the academic 
community, particularly organic synthetic chemists, were already 
employing the neolignoid nomenclature. Consequently, this 
current approach systematically expands the lignan nomenclature 
to encompass all potential structural lignoid inter-unit linkages, 
simplifying the current taxonomy while addressing relevant 
incongruences, such as those in C6-C3 trimers containing 
conventional “lignan” and “neolignan” linkages under the same 
lignoid core. Therefore, these lignoids had no clear classification 
before.95,96 In that context, the monomers that make up the lignoid 
core would rather not be the same with different linkage types, 
they do all come from the same biosynthetic pathway. The 
handbook strongly recommends discontinuing the use of the prefix 
'neo-' in neolignans.95,96 

Despite agreeing with Newman’s reclassification, this review 
retains the traditional lignan and neolignan division, as the general 
academic community in NP has not yet adopted the new (retro) 
nomenclature. Furthermore, most of the cited references in this 
review have cited and identified the compounds as either lignoids 
or neolignoids. Therefore, to prevent confusion by altering class 
names, we maintain the established nomenclature division. 
Nonetheless, we have chosen to cover the biosynthetic pathways 
of lignans and neolignans in a more integrative manner. 

Fig. 7     C6C3 units of a phenylpropanoid core and example of the 

difference between lignans and neolignans based on the different 

potential linkages. 
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 The study of these metabolites was extensive during the 
period from 1930 to 1980, leading to a well-established 
understanding of the main biosynthetic pathways for lignoids. 
Despite this foundation, gaps persist in the literature regarding the 
specific biosynthetic steps, particularly for the more complex 
neolignans, which exhibit a wide range of structural and 
stereochemical diversity. Lignoids are often optically active and 
display various substitution patterns, including different degrees of 
side-chain oxidation on their aromatic rings, attributable to their 
biosynthesis by stereoselective enzymes.48,53,89 

These compounds are synthesized in plants via the shikimate 
pathway, utilizing the amino acids L-Phenylalanine (L-Phe) and L-
Tyr as precursors for the formation of phenylpropanoid units 
(C6-C3)n.32,53,89,91 The initial step in lignoid biogenesis involves a 
stereospecific, non-oxidative enzymatic reaction called 
deamination. This reaction removes ammonia from L-Phe to form 
the E-cinnamic acid (20), and from L-Tyr to the p-coumaric acid 
(21), mediated by the enzymes phenylalanine ammonia-lyase (PAL) 
and tyrosine ammonia-lyase (TAL) enzymes, respectively. 
Subsequently, the P450 enzyme cinnamate 4-hydroxylase enzyme 
(C4H), along with the cofactor NADPH and molecular oxygen, 
hydroxylates cinnamic acid by adding a hydroxyl group at the C4 
(para) position of the aromatic ring. The resulting p-coumaric acid 
serves as a critical core in the phenylpropanoid pathway and has 
been isolated from O. minarum.53,89,97,98  Further biosynthetic steps 
yield catechols and organic acids, such as ferulic (22) and sinapic 
acids (23), and pave the way for the synthesis of more complex 
classes of compounds, including coumarins, flavonoids, and other 
lignoid cores (Fig. 9). 

Following the formation of p-coumaric acid, the enzyme 4-
coumaroyl CoA-ligase (4-CL) converts it into p-coumaroyl-CoA, 
initiating the cascade of biosynthetic reactions within the 
phenylpropanoid pathway. The primary precursors for lignoid 
biosynthesis are the monolignols, which include 4-
hydroxycinnamyl alcohol (24) (p-coumaryl alcohol), the coniferyl 

alcohol (25) and the sinapyl alcohol (26) (Fig. 10). An extensive 
range of different specific enzymes, many of which remain 
unidentified, catalyses the formation of these metabolites. This 
enzymatic arsenal includes O-methyltransferase (OMT), 
hydroxylases, lyases, oxidases, and synthases, among others. 
Additionally, isomerization reactions within different plant 
biosynthetic pathways can convert E-monolignols to Z-monolignols 
through the action of E→Z isomerases, further diversifying the 
structural possibilities of lignoids53,89,99.  

The biosynthesis of lignoids often results in enantiomerically 
pure metabolic products, attributed to the control exerted by 
stereoselective enzymes during the coupling reactions that form 
lignans and neolignans. Examples include the oxyneolignan (S)-
virolongin B (C7.2), or the (S)-ococymosin (C6.6), both neolignans 
isolated from O. cymosa, showcasing the typical enantiomeric 
purity of these compounds. As a result, lignoids are predominantly 
found in optically active forms, similar to certain alkaloids. 
Regarding the lignan scaffolds, the 7-7' epoxylignan (furan lignan – 
C2) and 9-9' diepoxylignans (furofuran lignan – C3) are the most 
common lignan found in the Ocotea genus accounting together for 
79.2% of all Ocotea isolated lignans reported in the literature.  

The formation of these lignan structures depends critically on 
the synthesis of monomer 25 and their transformation through 
pathways that involve oxidases and dirigent proteins (DIR). The 
discovery of DIR, facilitated by kinetic studies at the beginning of 
this century, has been instrumental in unraveling the mechanisms 
behind the stereoselective biosynthesis of lignoids.53,90–92,100 The 
biosynthetic pathway of lignoids, following phenol oxidation, is 
initiated by the action of DIR, which serves as a stereoselective 
coupling enzymes. This process begins after the initial oxidation of 
monolignols, leading to the formation of radical species. A key 
intermediate in this pathway is the coniferyl alcohol radical (26) 
that gives rise to the (8R,8R')-quinone methide (27), the secondary 
intermediate. This step is pivotal in the formation of complex 

Fig. 8 C6-C3 units of neolignans formation via allylphenol and 

propenylphenol.  

 

 

Fig. 9 The main monomers derived from shikimate pathway in the lignans 

and neolignans biosynthesis.  

 

 

formation of (+)-pinoresinol and conversion to yangambin, via (+)- syringaresinol 
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lignoid structures and exemplifies the importance of 
stereoselective enzymatic control in these biosynthetic processes.     

Subsequently, DIR-mediated stereoselective intramolecular 
cyclisation leads to the formation of the furofuran lignan (+)- 
pinoresinol (28), a 9-9' diepoxylignan. This reaction is catalyzed by 
the coupling process involving (+)-pinoresinol synthase-DIR, which, 
depending on the specific enzyme variant, such as (-)-pinoresinol 
synthase-DIR, can result in the product assuming an inverted 
configuration.53,89,91 To summarize, the biosynthetic reaction starts 
with one-electron oxidation at a phenol group of the p-coumaryl 
alcohols, leading to radical intermediates. At that point, phenol 
oxidation causes the delocalization of an unpaired electron by a 
resonance mechanism from one side-chain to another of the C6-C3 
unit. So, four resonance structures can conjugate each other by 
radical pairing and then afford an array of possible dimeric or 
oligomeric reactive systems. Those are susceptible to nucleophilic 
attack from the intramolecular OH groups, or even from external 
nucleophiles, as represented in Fig. 10.53,97  Thus, monolignols can 
generate a variety of coupling radicals that are further modified 
and rearranged, originating a wide range of different lignoids and 
neolignoids, and thus a widespread chemical structural 
possibilities.53,89,97,101 For example, the formation of the furofuran 
syringaresinol (29) and yangambin (30), which are derived from 
precursor 28 through enzymatic hydroxylation and SAM/OMT 
methylation. The compounds 29 and 30 were described in the O. 
duckei and the O. heterochroma, respectively.  

Moreover, the furan lignans, e.g. the 7-7' epoxylignan cores, 
are formed by the coupling of propenylphenols monomers units, 
which are coniferyl alcohol derivatives, such as the eugenol (31), 
isoeugenol (32) and any other potential methylated derivatives. 
The dimerization of the E-isoeugenol through radical coupling can 
give rise to the (+)-verrucosin (33). Similarly, its methoxylated 
monomers after radical coupling can generate the (+)-veraguensin 
(34) and feasibly the (+)-galgravin (35) furan lignans, which are 
stereoisomers (Fig. 11). Configurational aspects thus play a 
significant role in the lignoids biosynthesis, as different subclasses 
can incorporate more than four to five asymmetric carbons into 
the same scaffold, leading to a high level of complexity in the 
natural biosynthesis of these plants. Furan lignan cores 34 and 35 
are the most commonly found in the Ocotea genus and have been 
isolated from O. foetans, O. veraguensis, O. catharinensis, and 
several other Ocotea species (Supplementary Table S3, available at 
Zenodo's link- https://doi.org/10.5281/zenodo.1067).  

The biosynthesis of more oxygenated lignoids, though less 
common, also can be found in the Ocotea genus, and it is 

potentially derived from the radicals of methoxylated monolignols 
precursors.97,101 Recent studies of Ocimum basilicum (sweet basil) 
metabolism have shed light on this process. These studies 
highlighted that NADPH-dependent reductases play a crucial role 
in catalysing the conversion of coniferyl acetate in chavicol and 
anol units of phenylpropene, such as eugenol and isoeugenol. The 
enzymes responsible for the catalysis are eugenol and isoeugenol 
synthases, respectively.97,102 (Fig. 11). 

On the other hand, the neolignans scaffolds are abundant in 

Lauraceae, particularly in the Ocotea genus, where 82.2% of all 
lignoids are considered neolignoids (Supplementary Table S3). As 
already argued, radical coupling formation is the primary 
mechanism responsible for the oxidative dimeric formation of 
neolignans, offering a wide range of inter-unit linkage possibilities.  
This process depends on proton and electron abstraction from the 
phenylpropanoid units to generate propenylphenol, allylphenol, 
and monolignol radicals, which can be stabilized by their respective 
resonance effects. The chemical reactions are responsible for the 
different biding positions of the monomers, such as the 3-3’, 7-1’, 
7-3’, 8-1’, 8-3’, 8-O-4’, 3-O-4’, 2-O-3’, and other possible linkages 
occur through the Michael addition reaction, via carbanion 
formation and resonance between the generated enolate ions. 
Thus, a carbon-carbon bond is created at the acceptor's carbon of 
the coupling oxidated radical monomer. This can occur via Diels-
Alder's concerted mechanism for a range of other neolignoids 
scaffolds. Additionally, further combinations of secondary 
aromatic rings arise through the Claisen condensation mechanism 
coupled with Friedel-Crafts reactions for aromatic ring alkylation, 
allowing a wide variety of stereoselective and complex lignoid 
scaffolds.53,96,103 

However, even though lignoids display diversity, within the 
Ocotea genus, more than one-third (36.3%) are bicyclo 
neolignoids, making this subclass the most representative lignoid 
subclass in the Ocotea species. These compounds have been 
identified in different species such as O. aciphylla, O. bullata, O. 
catharinensis, O. veraguensis, and O. porosa, among others.26,104–

108 Following closely, the benzofuran subclass accounts for 32.87% 
of the isolated lignoids, found in species such as O. catharinensis, 
O. veraguensis, O. porosa, O. macrophylla and other Ocotea 

Fig. 10 Coniferyl alcohol radicals and DIR enantioselective formation of 

(+)-pinoresinol and conversion to yangambin, via (+)- syringaresinol.  

 

 

 

 

 

 

Fig. 11  The proposed galgravin and veraguensin biosyhnthesis via 

methyleugenol precursors.  
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species (Supplementary Table S3, available at Zenodo's link- 
https://doi.org/10.5281/zenodo.1067). The high prevalence of 
these two subclasses within the Ocotea spp. is not merely 
coincidental. Back to the biosynthesis aspects, benzofuran 
neolignans, particularly those with 8-1’ and 8-3’ linkages, are 
considered key precursors in the biosynthetic pathway before 
rearrangement into the bicyclic [3.2.1] octane neolignoids. Fig. 12 
illustrates the acid-catalyzed rearrangement of the 8-1’ linkage to 
form the classic bicyclic neolignoids scaffold. Additionally, the 
reverse pathway back to the benzofuran core is also feasible, 
allowing for further biochemical modifications within the plant 
biosynthesis.96,109,110 

 
4.2 Ocotea spp. lignoids profile 

Over the past century, lignoids have been extensively studied 
for their role as phytochemical biomarkers and through various 

systematic approaches, prominently by Otto Gottlieb and 
collaborators from 1970 and 2000.10,104,110,111 More recently, a 
metabolomic study using only literature data by Antonio et al. 
(2020) shown a shift in academic interest towards alkaloids in the 
21st century, with lignoids receiving less focus. Nevertheless, 
besides their research limitation regarding acquisition data for 
metabolomics models, and even the limited lignoids available data 
in the literature (small number of Ocotea sp. available), their 
multivariate statistical analysis corroborated that Ocotea lignoids 
are a valuable piece of information to the field of chemophenetics 
research. In addition, their work allowed the comprehension that 
Gottlieb's chemophenetic statement that Ocotea species 
exclusively biosynthesize either alkaloids or lignoids is no longer 
valid, as modern chemical analytical technics evidenced that 
different Ocotea sp. can elicit both alkaloids and lignoids, e.g. as 
the case of O. macrophylla, O. duckei and O. minarum.32   

In this context, the study of metabolomic features through 
untargeted metabolomics strategies has the potential enhance 
plant taxonomic issues in the genus. Species differentiation could 
be rapidly achieved using metabolic fingerprints obtained from 
state-of-the-art analytical tools like Ultra Performance Liquid 
Chromatography coupled with High-Resolution Mass 
Spectrometry (UPLC-HRMS). Antonio et al.  (2020) also 
demonstrated that comparing lignoid content is an effective 
method for distinguishing similar Ocotea species due to the 
significant variation in their lignoid profiles. Diepoxylignans, such 
as compound 30, have proven to be effective phylogenetic 

biomarkers within the genus. Continued application of untargeted 
metabolomics may uncover new markers, aiding taxonomic 
classification, as these methods are already widely used in drug 
and phytomedicine quality control.32,112–114  

The increasing focus on the chemical data and bioactivity of 
lignoids over the last decade suggests that these compounds may 
soon regain broader interest in the academic community. Original 
articles accessing chemical data and the bioactivity of lignoids have 
been increasing in the last 10 years. Noteworthy, pharmacological 
effects have been reported in approximately 20% of the chemically 
characterized Ocotea species. To date, 172 different lignoid 
chemical structures have been isolated from the genus 
(Supplementary Table S3, available at Zenodo's link- 
https://doi.org/10.5281/zenodo.1067). Fig. 13-18 describe the 
various lignoid cores found among the different Ocotea lignoid 
producers reported in the literature. 

The diverse lignoid profile of Ocotea results from complex 
enzymatic reactions within specialised biosynthetic pathways. 
Recent studies have shown that Ocotea species-producing lignoids 
have a high potential for treating neglected tropical diseases 
(NTDs) such as dengue fever and leishmaniosis, which affect over 
8 million people in Latin America. Accordingly, potent larvicidal and 
antiprotozoal effects were reported for different lignoids isolated 
from plants of the Ocotea genus. For example, neolignans isolated 
from O. cymosa have shown high larvicidal potential, halting the 
Aedes aegypti life cycle at the larval stage with 100% mortality.99,115  
The yangambin lignan (C3) and the licarin A neolignan (C6.6) from 
O. macrophylla have exhibited low IC50 values for amastigote and 
promastigote forms of different Leishmania (L.) subspecies. In 
addition, the lignoid 30 (Fig. 9)  and burchelin (C6.3) were also 
reported in the literature as highly cytotoxic agents against 
trypomastigote forms of Trypanossoma cruzi.101,116–119  

Moreover, lignoids are recognized as pertinent bioactive 
compounds with notable pharmacological properties, including 
pronounced antitumoral, antiviral, and anti-inflammatory 
effects.6,48,92,120,121 For instance, the antitumor activity of the 
furofuran lignan (C3), the aryltetralin lactone (C4), and the 
cyclolignan (C5) have been reported as active against a broad 
spectrum of cancer cell lines, including human lung 
adenocarcinoma (A-549), human colon adenocarcinoma (HT-29), 
human breast adenocarcinoma (MCF-7), and murine lymphocytic 
leukemia (P-388).90 Regarding antiviral activities, different classes 
of lignoids have shown to be effective against hepatitis B virus 
(HBV), human cytomegalovirus (HCMV), human immunodeficiency 
virus (HIV), SARS-virus (SARS-CoV) and Zika virus (ZIKV).92,120 
Additionally, diastereomeric lignans isolated from the O. 
macrophylla exhibited PAF-antagonism and potent dual inhibition 
of COX-2/5-LOX pathways.6,108 A study of our research group 
confirms potent in vivo anti-inflammatory activity by dual 
inhibition of the PGE2 production and neutrophil recruitment of 
the bicyclo [3.2.1] octaneneolignans (C9). Although, they were 
isolated from Aniba firmula, which also belongs to Lauraceae.121–

123 The derivatives of the bicyclo [3.2.1] octaneneolignans 
represent 49.3% of the Ocotea known lignoids in the literature, 
which are encountered in 64.7% of the Ocotea sp. producer, e.g. 
the O. macrophylla,  O. catharinensis, O. porosa, O. cymosa, and 
others.94,111,121 (Supplementary Table S3, available at Zenodo's 
link- https://doi.org/10.5281/zenodo.1067). Furthermore, the 
bicyclic neolignoid sibyllenone (C9.1b), isolated from O. bullata, 
has shown promising anti-inflammatory activity through inhibition 
of 5-LOX enzymes.26 

Fig. 12  The proposed bicyclic [3.2.1] octane neolignoids via 8-1’ linkage radical 

monomers based on acid catalysed rearrangment mechanism.  
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Lastly, the comprehensive review of Teppono et al. (2016) 
reported interesting data on recent advances in the lignoids 
pattern biosynthesis, detailing a classification into ten lignan core 
subtypes and fifteen neolignan subtypes.89  Our review highlights 
that the Ocotea genus encompasses 5 of these 10 lignan subtypes 
8-8' lignans (C1); 7-7' epoxylignans (C2), 9-9’ diepoxylignans (C3), 
8.8',2.7' aryltetralin lignan lactones (C4), and 2-7' cyclolignans (C5). 
Additionally, the genus hosts 9 different neolignan core subtypes, 
including benzofuran neolignans (C6), oxyneolignans (C7), 8-1’/8-
3’/other linkage neolignoids (C8), along with bicycle [3.2.1] 
octaneneolignans (C9). Thus, alongside its alkaloids, Ocotea is also 
a remarkably diverse source of lignans and neolignans, offering 
significant variations in scaffold structures (Fig. 13-18). 

 

 
 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 13 Chemical diversity of lignoids in the Ocotea genus expressed by the 

number of different chemical structures reported in literature. 

 

Fig. 14  Lignans chemical scaffolds found in Ocotea species: (C1) 8-8’-lignans, (C2) 7-7' epoxylignans, (C3) 9-9' diepoxylignans, (C4)  8.8',2.7' 

aryltetralin lignan lactones, and (C5) 2-7' cyclolignans. Molecular diversity of lignans in the genus Ocotea expressed by the number of different 

chemical structures reported in the literature for each subclass Lignans chemical scaffolds.  
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Fig. 15 Benzofuran neolignans chemical scaffolds found in Ocotea species: (6.1a) ferrearin type I, (6.1b) ferrearin dehydro type, (6.1c) ferrearin 

type II, (6.1d) ferrearin type III, (6.2a) porosin type I, (6.2b) porosin type II, (6.2c) porosin type III, (6.3) burchelin, (6.4) alpha-beta ketone type, 

(6.5) ocophyllal type, and (6.6) ococymosin type.  

 

 

Fig. 16 Oxyneolignans chemical cores found in Ocotea species: (C7.1) dioxyneolignan and (C7.2) oxyneolignan.  
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Fig. 17 Lignoids chemical scaffolds found in Ocotea species: (C8.1a) 8.1’ neolignan I, (C8.1b) 8.1’ neolignan II, (C8.2) 8’-oxo-1’ neolignan I, (C8.3) 

8.3’ neolignan I, (C8.4) 4.3’- didymochlaenone, and (C8.5) 7.8- secolignan.  
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Fig. 18 Bicyclo neolignans chemical cores found in Ocotea species: (C9.1a) 7.3’,8.1’ cycloneolignan, (C9.1b) 7.1’,8.3’ cycloneolignan, (C9.1c) 

7.3’,8.5’ cycloneolignan, (C9.2) 7.3’,8.1’ oxaguianin type, (C9.3a) 7.3’,8.1’ canellin type, (C9.3b) 7.3’,8.1’ canellin type II, (C9.4a) 7.3’,8.1’ 

cycloneolignan ketone type I, (C9.4b) 7.3’,8.1’ cycloneolignan ketone type II, (C9.4c) 7.3’,8.1’ cycloneolignan ketone type III, and (C9.5) 7.1’,8.3’ 

oxycycloneolignan.  
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5. Ocotea sp. metabolites: flavonoids 

5.1 Ocotea sp. flavonoids biosynthetic approach 

Flavonoids play a crucial role in plant ecology, acting as defense 
agents against several environmental and biotic stresses such as 
ultraviolet radiation, pests, and diseases. Likewise, they are 
integral in regulating plant growth and development by modulating 
different plant hormones, thus also playing a pivotal role in plant 
evolution.124–126 In addition, they are known for their beneficial 
effects on human health, including antioxidant, anti-inflammatory, 
anti-cancer, and anti-viral properties.126–129 These diverse groups 
of naturally occurring polyphenolic compounds are prevalent in 
the plant kingdom, including the Lauraceae and the Ocotea 
genus.6,32,124,130 In this review, flavonoids were identified as the 
third most commonly isolated metabolite class in the Ocotea genus 
reported in the literature, with 19 species currently recognized to 
produce these polyhydroxylated aromatic compounds. In our 
recent publication using modern annotation analytical techniques, 
this number was highly increased up to 59 Ocotea species able to 
biosynthesis flavonoids.27 (Supplementary Table S4 and S4.1, 
available at Zenodo's link- https://doi.org/10.5281/zenodo.1067). 

The study of flavonoid biosynthesis and their chemical diversity 
contributes significantly to the understanding of plant evolution. 
The diversified chemical structures of flavonoids across different 
plant species reflect changes in the genetic sequences of their 
biosynthetic enzymes, which may allow plants to adapt to varying 
environmental conditions.131,132 In particular, the analysis of 
flavonoid chemical cores can aid in taxonomic classification and fill 
potential phylogenetic gaps. By identifying specific flavonoid 
subclasses, investigations in the fields of chemophenetic, 
metabolomics, and transcriptomics can be implemented to 
elucidate the relationships between different plant 
genera.32,53,124,133  In the Ocotea genus, known to produce a wide 
variety of flavonoids, there is a potential for identifying specific 
biomarkers aligning with phytochemistry strategies guided 
through metabolomics studies.32,79,124,134 

The flavonoids are chemically characterized by a general 
structure of a 15-carbon skeleton, that consists of two phenyl rings 
(A and B) and a heterocyclic ring (C). Biosynthetically, the carbon 
chain is named as C6-C3-C6 unit. Significant efforts have been 
made by the scientific community to elucidate the biosynthetic 
pathways of these bioactive polyphenolic metabolites.53,124,127  
Previous studies have shown that flavonoid biosynthesis begins 
with the shikimate pathway, although the mevalonate pathway 
also plays a crucial role in producing different flavonoid subclasses. 
Such molecules can exhibit chirality and interesting bioactivity, and 
thus, the study of enzymatic stereospecificity is closely associated 
with the chemical study of these specialised metabolites.53,124,127 

The first step of flavonoid biosynthesis is the same as lignoids 

and includes the conversion of the L-Phe / L-Tyr until the formation 

of the p-coumaroyl-CoA precursor (36). The next step of flavonoid 

biosynthesis consists of the catalysis by the chalcone synthase 

(CHS) enzymes and the combination with mevalonate pathway 

precursors. Thus, the p-coumaroyl-CoA is extended with three 

units of the malonyl-CoA precursors. The final poly-β-keto chain, is 

a tetrahydroxychalcone, which undergoes Claisen cyclisation to 

produce the aromatic ring A, leading to the formation of the 

naringenin-chalcone precursor (37) (Fig. 19). The following 

cyclisation is responsible for the six-membered heterocyclic ring of 

flavonoids.53,124 

The subsequent transformation involves the activity of 

flavanone isomerase (CHI) enzymes, catalyzing a path via 

intramolecular Michael-type nucleophilic attack. Specifically, a 

phenol group acts as the nucleophile, attacking the α,β-

unsaturated ketone to form the heterocycle C ring and give rise to 

the naringenin precursor (38). The aromatic ring B originates from 

the shikimate pathway, while ring A is derived from a polyketide 

origin, and the heterocycle C is formed by nucleophilic addition. 

This union of rings A, B, and C forms the stereospecific flavanone 

core, which is the primary precursor of the flavones, isoflavones, 

and flavonol subclasses, with the latter being most prevalent in the 

Ocotea genus, exemplified by derivatives such as kaempferol and 

quercetin, and also less present myricetin derivatives.53,127,130,135 In 

addition to the core modifications, further diversification of 

flavonoid chemical diversity is driven by various enzymatic groups. 

Flavone synthases (FNS), isoflavone synthases (IFS), flavonol 

hydroxylases (F3H, F3’H, and F3’5’H), dehydratases (HID), along 

with other isomerases and reductases, facilitate the formation of a 

vast array of analogues including flavones, flavan-3-ols, 

anthocyanidins, catechins, and glycoside flavonoids. Moreover, 

other enzyme groups of glycosyltransferases (GTs), 

methyltransferases, and acyltransferases can perform additional 

Fig. 19 The general flavones, isoflavones and flavonols biosynthesis.   
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modifications on the flavonoid chemical scaffolds, leading to an 

assorted range of chemical structure derivatives.53,124,127  For 

example, flavonolignans represent a hybrid class of NP 

biosynthesized through the oxidative coupling of taxifolin 

(5,7,3',4'-flavan-on-ol) with a phenylpropanoid, typically coniferyl 

alcohol. Recently, a flavonolignan was isolated for the first time 

within the Ocotea genus, specifically, from O. diospyrifolia.46 

 
5.2 Ocotea spp. flavonoids profile 

Flavonoids are specialised metabolites characterized by their 
structure of two benzene rings linked by a heterocyclic pyran ring, 
which can undergo a wide variety of chemical modifications. These 
include substitutions with hydroxyl, methoxy, or a range of 
different glycosyl groups, which significantly affect their physical 
and chemical properties, as well as their biological activity.127,135,136 

Furthermore, in the Ocotea genus, flavonoids are 
predominantly derivatives of catechin, epicatechin, quercetin, and 
kaempferol.32,130 Despite growing research interest, knowledge of 
Ocotea flavonoid profiles remains limited.130 Still, 56 distinct 
flavonoids were reported, of which ~14.3% are non-substituted 
flavonoid cores (n= 8) and ~85.7% (n= 48) are glycosylated. For the 
glycosylated, ~91.6% (n= 44) are O- glycosylated, and ~8.4% (n= 4) 
are C-glycosylated derivatives. For example, O-alkyl flavonoids 
were found only in O. porosa, while C-glycosylated were already 
found in four other Ocotea sp., including O. aciphylla, O. foentans, 
O. nutans and O. odorifera. Additionally, a recent comprehensive 
UPLC-HRMS flavonoid profiling from our research indicated the 
presence of apigenin flavone backbone in other 6 Ocotea species 
including O. diospyrifolia, O.guianensis, O. lancifolia, O. notata, O. 
odorifera and O. porosa. The apigenin derivatives were found 
mainly in C-glycoside form, with O. porosa exhibiting the highest 
flavone : flavonol ratio.130 Additionally, This distribution pattern 
corroborates that Ocotea could occupy either a basal or 
intermediate position in the evolutionary lineage of the Lauraceae, 
as previously pointed out by Antonio and collaborators (2020).32 
This is supported by the low occurrence of O-alkylated flavonoids, 
which are more commonly found in evolutionarily advanced plant 
groups.32 However, as the evolutionary studies become more 
accurate and precise with a larger set of species evaluated, 
additional studies using DNA and morphological data could provide 
further evidence to support or refute that hypothesis.37  

Flavonoids are not only crucial from an evolutionary and 
phylogenetic perspective but also noted for their diverse 
bioactivities. One of the most common flavonoid cores found in 
Ocotea species is the 3-O-glycoside flavonol (core 3), with at stands 
for isoquercitrin, a representative example, which was already 
isolated from O. notata, O. elegans, O. corymbosa, and O. caudata. 
Isoquercitrin has been shown to possess antibacterial activity 
against E. coli cells, inducing apoptosis-like death and damaging 
membrane dynamics by inducing oxidative stress.137 This 
underscores the potential of Ocotea flavonoid’s bioactivity, which 
warrants further exploration of their biological properties. 
Flavonoids have also been increasingly recognized for their 
antioxidant and pro-oxidant properties, as well as for relevant 
antiviral and antiprotozoal effects.32,124,126,127,138 A series of 
flavonols can be used to seek more effective treatment for NTDs, 
such as leishmaniosis and trypanosomiasis.6,126 Also, Ocotea 
species, such as O. minarum and O. odorifera, have been 
recognized as potent natural antioxidants.98,136 Antiviral effects 
against herpes virus (HSV-1 and 2) were reported for flavonoids of 
the O. notata leaves extract.6  Recently, bacteriostatic effects were 

evidenced for O. minarum flavonoid fractions against the 
Salmonella, the Pseudomonas and the Proteus genera.98 

Flavonoids also exhibit other interesting biological activities, 
and low toxicity for human cells, and thus are considered safe 
substances for consumption. Some flavonoids, such as biflavonoids 
from Caesalpinia pluviosa (Fabaceae), have shown notable 
cytotoxic activity against various tumor cell lines.126–129,139 More 
specifically, the biflavonoid caesalpinioflavone, extracted from the 
stem bark of C. pluviosa, was able to reduce the viability of tumor 
cell lines, including A549, MCF-7, Hst578T, and HTC. The 
mechanism of action involved cell cycle arrest at the G1/S 
transition at least in A549 and MCF-7 cells.139 For instance, 
biflavonoids from O. odorifera and O. caniculata (core C10) might 
also hold promise for cytotoxic activity and might be worthy of 
further investigation.32,136 

This extensive chemical diversity of flavonoids underscores 
their potential contribution to our understanding of plant 
evolution and adaptive metabolism. Therefore, the development 
of flavonoid-based drug candidates is of great interest due to the 
broad range of biological activities they exhibit, such as 
antioxidant, anti-inflammatory, and antitumor, besides the low 
cytotoxicity effects for human cells. As chemical data accumulates, 
future studies could delineate specific flavonoids within Ocotea 
that might serve therapeutic purposes, potentially leading to novel 
drug prototypes. Moreover, they might also be used as bioactive 
markers for taxonomy together with the development of a more 
comprehensive understanding of their chemical diversity.  

 In this context, a broad diversity of specific flavonoid glycoside 
derivatives were isolated from several Ocotea species, such as O. 
vellosiana, O. odorifera, O. porosa, O notata, O. lancifolia and 
others.6,32,127,135 Fig. 20-21 describes all the different flavonoid 
cores encountered in the genus. It includes a wide number of 
flavonoids subclasses, including, flavone (core 1), flavonol (3-
hydroxy flavone, core 2), 3-O-glycoside flavonol (core 3), 7-O-
glycoside flavone-flavonol (core 4), flavanonol (core 5). Also, the 3-
O-glycoside flavanonol (core 6), flavan-3-ol (core 7.1), 
phenylpropanoid-substituted flavan-3-ol, (core 7.2), 7-O-glycoside 
flavanone (core 8), 8-glycoside flavone (core 9.1), 6-glycoside 
flavone (core 9.2), flavanonol dimer or biflavonoids (core 10), 
tetrahydroxychalcones (core 11) and flavonolignan (core 12). 

 

 
 

Fig. 20  Chemical diversity of flavonoids in the Ocotea genus 

expressed by the number of different chemical structures reported in 

literature. 

 



ARTICLE Journal Name 

20 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 

 
 
 
 
 

 

 
 
 
 
 

Fig. 21        Flavonoids cores found in Ocotea species: (C1) flavone, (C2) flavonol, (C3) 3-O-glycoside flavonol, (C4) 7-O-glycoside flavonol, (C5) 

flavanonol, (C6) 3-O-glycoside flavanonol, (C7.1) flavan-3-ol, (C7.2) phenylpropanoid-substituted flavan-3-ol, (8) 7-O-glycoside flavanone, 

(C9.1) 8-glycoside flavone (C9.2) 6-glycoside flavone, (C10) flavanonol dimer or biflavonoid, (C11*) tetrahydroxychalcone and (C12#).  

flavonolignan *Flavonoid precursor; # Flavonoid mixed biosynthetic class. 
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6 Ocotea sp. metabolites: terpenoids 

6.1 Ocotea spp. terpenoids biosynthetic approach 

Terpenes and terpenoids represent the largest class of 
chemicals found in the essential oils of Ocotea species, followed by 
phenyl compounds such as phenylpropanoids and phenylpropene 
derivatives, along with aldehydes, alcohols, and esters. Indeed, 
volatile terpenes are the predominant constituents in the essential 
oils of a vast array of plants and flowers globally.140–142 These 
compounds are biosynthesized predominantly through two 
pathways: the mevalonic acid (MVA) (39) and the 2C-methyl-D-
erythritol-4-phosphate (MEP) (40) pathways. The biosynthesis 
begins with the isoprene-like C5 building block, which can be 
assembled in a head-to-tail fashion or through a central tail-to-tail 
linkage. These building blocks undergo further modifications such 
as cyclisation, polymerization, oxidation, and dimerization, 
allowing for extensive structural diversity.53,143 

The terpenes subclasses can be classified according to the 
number of isoprene units as hemiterpenes (C5), monoterpenes 
(C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), 
triterpenes (C30), and tetraterpenes (C40). Even though the 
isoprene unit is naturally produced, essentially it is not involved in 
the terpenes formation, instead, the biochemically active isoprene 
units are the isopentenyl diphosphate (IPP) (41) and the 
dimethylallyl diphosphate (DMAPP) (42).53,144,145 In plants, the 
MVA and the MEP pathways operate in different cellular 
compartments within photosynthetic tissue. The cytosol is the site 
of activity for the MVA pathway, while the MEP pathway occurs 
within the plastids. Different classes of terpenoids are synthesized 
via each pathway: sesquiterpenes, sterols, and triterpenes typically 
arise from the MVA pathway, whereas monoterpenes and 
diterpenes are generally products of the MEP pathway.53,143,146 
Ocotea species produce majoritarian sesquiterpenes (via MVA) and 
monoterpenes (via MEP), indicating both pathways are highly 
evolved and active within the Ocotea metabolome. 

In detail, the MVA pathway begins with the enzyme 
acetoacetyl-CoA synthase (E1) combining two acetyl-CoA units via 
a Claisen condensation to form acetoacetyl-CoA. This precursor is 
then converted by hydroxymethylglutaryl-CoA synthase (E2), 
which adds a third acetyl-CoA molecule to produce 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA). The thioester bond of HMG-CoA is 
reduced by HMG-CoA reductase (E3), along with 2 NADPH + 2H+, 
transforming it into MVA. This acid is then sequentially 
phosphorylated by ATP-dependent mevalonate kinase (E4), 
phosphomevalonate kinase (E5), and mevalonate 5-diphosphate 
decarboxylase (E6) to yield IPP. Finally, IPP isomerase (E7) catalyzes 
the conversion of IPP to DMAPP (Fig. 22a).53,147 

The MEP pathway starts with the condensation of the 
glyceraldehyde-3-phosphate and the pyruvate catalyzed by DXP 
synthase (E8)/thiamine pyrophosphate cofactor (TPP). This 
reaction produces the 5-carbon intermediate, 1-deoxy-D-xylulose-
5-phosphate (DXP) (43). The activation mechanism involves the 
decarboxylation of pyruvic acid to form an acetaldehyde-enamine 
intermediate. This intermediate allows the glyceraldehyde 3-
phosphate unit to undergo a nucleophilic attack by the enamine. 
Subsequently, DXP is converted MEP through a pinacol-like 
rearrangement, followed by a NADPH-dependent reduction 
catalyzed by 1-deoxy-D-xylulose-5-phosphate isomerase (E9). At 
this point, MEP reacts with the cytidine triphosphate (CTP) 
followed by phosphorylation via the ATP-dependent kinase 4‐
diphosphocytidyl‐2C‐methyl‐D‐erythritol (E10) and cyclisation with 

loss of CTP by 2C-methyl‐D‐erythritol‐2,4‐cyclodiphosphate 
synthase (E11), forming the the cMEPP intermediate. A two-
electron reduction by 1-hydroxy-2-methyl-2-(E)-butenyl-4-
diphosphate synthase (E12) produces 4-hydroxy-3-methyl-but-2-
enyl diphosphate, which is subsequently converted into IPP and 
DMAPP by 4-hydroxy-3-methyl-2-(E)-butenyl-4-diphosphate 
reductase (E13) (Fig. 22b).53,147 

Thus, the IPP and DMAPP are the primary building blocks for 

terpenes formation, which can be further modified generating a 
broad and diverse number of structures with significant biological 
properties. The IPP represents a nucleophilic isoprene unit, while 
the DMAPP are electrophilic specie. Thus, these two groups 
commonly assemble in a head‐to‐tail fashion that is catalyzed by 
GPP synthase (E14). The geranyl pyrophosphate (GPP) (44) forms 
the backbone of most monoterpenoids (C10), such as geraniol (45), 
citronellol (46), linalool (47), and cyclic terpenoids like camphor 
(48), borneol (49), limonene (50), terpineol (51), and 1,8-cineol 
(52), which all are widespread in the Ocotea genus.53,145,148 
Monoterpenoid derivatives result from a series of enzymatic 
modifications, undergoing various oxidation and reduction 
reactions. For example, linalool synthase (LIS) acts on linaloyl 
pyrophosphate (LPP) (53), producing linalool (47) (Fig. 23). 
 

Fig. 22  Biosynthetic pathway of IPP and DMAPP via a) MVA and b) 

MEP formation. 
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Fig. 23 Biosynthesis of GPP, the backbone for monoterpenes such as 

geraniol, citronellol, linalool and linalyl acetate.  

The mevalonic acid (MVA) pathway predominantly leads to the 
biosynthesis of sesquiterpenes (C15), a major class of terpenes 
formed by the union of three isoprene units. These units originate 
from the farnesyl diphosphate (FPP) precursor (54), which is 
synthesized by the condensation of an isopentenyl diphosphate 
(IPP) unit with geranyl pyrophosphate (GPP) through the action of 
GPP synthase (E14). The resulting GPP cation facilitates the 
addition of an IPP unit, culminating in the formation of the FPP 
cation. This process is followed by the loss of a proton in a reaction 
catalyzed by FPPS prenyltransferase (E15) (Fig. 24). The chain 
length can be even increased by further modifications through 
oxidative cyclisation reactions to give rise to a diversified number 
of metabolites. Thus, besides the great number of linear structures, 
a vast range of sesquiterpenes motifs such as mono-, bi-, and 
tricyclic structures can be biosynthesized.53,145  The sesquiterpenes 
such as the (+)-germacrene A (55) and the (+)-germacrene B (56) 
are relevant metabolites encountered in different Ocotea species, 
and also well present in their essential oils.19,149 

Likewise, the biosynthesis of diterpenes (C20) occurs with the 
addition of another IPP unit to the FPP core through the action of 
geranylgeranyl diphosphate synthases. In this way, diterpenes are 
characterized by four isoprene units with additional cyclized 
modifications. Regardless of that, diterpenes are less common in 
essential oils, and this class has been found only in a few Ocotea 
species, for example, O. floribunda, O. nutans and O. bicolor 
(Supplementary Table S5-S6 and S5.1-S6.1, available at Zenodo's 
link- https://doi.org/10.5281/zenodo.1067). Due to their rarity, 
diterpenes may not serve as primary biomarkers for the Ocotea 
genus. Instead, they provide specific chemical profiles useful for 
differentiating species within the genus. 

 

Fig. 24      Biosynthesis of FPP, the backbone for sesquiterpenes such as 

(+)-germacrene A and B and parthenolide.  

 
6.2 Ocotea spp. terpenoids profiles 

6.2.1 Monoterpenes 

Ocotea species are known for producing a diverse array of 
monoterpenes, which include both oxygenated and non-
oxygenated, as well as linear and cyclic compounds. These 
monoterpenes are distinguished by their varied chemical 
structures and unique biological activities, demonstrating a range 
of pharmacological properties such as antimicrobial, antifungal, 
antitumoral, and anti-inflammatory effects. Studies have 
suggested that the therapeutic potential of monoterpenes is due 
to their ability to interact with various biological targets, including 
enzymes, receptors, and ion channels. Such interactions can 
significantly affect cellular processes by modulating signaling 
pathways and influencing inflammation, apoptosis, and cell 
growth.11,143,150,151   

Among these, several components like 47, 49, 51, 52, limonene 
(50), β-myrcene (69), 4-terpineol (70), cis-β-ocimene (71), trans-
ocimene (72), α-pinene (73), β-pinene (74), and camphene (75) are 
prevalent across various Ocotea species (Fig. 25). Specifically, 69 is 
a major constituent not only in several plants but also abundantly 
found in twenty-two different Ocotea species (Supplementary 
Table S6 and S6.1, available at Zenodo's link- 
https://doi.org/10.5281/zenodo.1067). This compound is known 
as a highly important raw material for the production of flavors, 
fragrances, cosmetics, and vitamins, and also plays an important 
role in the pharmaceutical field since 69 has exhibited significant 
biological properties, e.g. anxiolytic, antioxidant, anti-ageing, anti-
inflammatory and analgesic.152 Similarly, 52 (also known as 
eucalyptol) is found in twenty-one Ocotea species and is renowned 
for its anti-inflammatory effects, primarily through the inhibition of 
interleukins and interference with TNF-α production. It also 
exhibits antinociceptive, cardiovascular, and vasorelaxant 
properties.153,154 

 Moreover, 51 and 70, which are commonly found in the Tea 
tree (Melaleuca alternifolia), were present in fifteen Ocotea 

species, in addition to the -, - and -terpineol that were also 
reported. These compounds act as anti-inflammatory agents by 
inhibiting the production of LPS-induced mediators such as IL-1β, 
IL-6, and IL-10.155 The 51 is also utilized industrially as an ingredient 
in aromatic scents, perfumes, and cosmetics, given its lilac-like 

https://doi.org/10.5281/zenodo.1067
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odor. Additionally, it exhibits a wide range of biological properties, 
including antioxidant, anticancer, anticonvulsant, antiulcer, 
antihypertensive, antinociceptive, and insecticidal effects.156 Fig. 
25 describes the most commonly identified monoterpenes in the 
Ocotea genus. 
 

Fig. 25 Widespread components of Ocotea sp. essential oils from the 

monoterpene class.  

The 47 was found in thirteen Ocotea species, and it is also 
recognised as a biologically active compound with commercial 
interest due to its beneficial aromatic properties. This compound 
has demonstrated repellent properties against various crop-
destroying insects, and potential antioxidant, anti-inflammatory, 
anticancer, anxiolytic, analgesic, and sedative effects.157,158 
Moreover, the 49 is a common component in plants essential oils, 
which is present in numerous medicinal plants, such as the 
Valeriana officinalis, the Matricaria chamomilla, the Lavandula 
officinalis, and it was also present in twelve Ocotea species. In 
addition, 49 can be used in fragrances and cosmetics, and also hold 
potential for medicinal applications, once there are reports of 
biological activities that include antimicrobial, anti-inflammatory, 
and antiviral effects.150,159,160 

Terpenoids from several Ocotea species have shown promising 
antitumor properties against a variety of cancer cell lines, including 
breast adenocarcinoma epithelial cells (MCF-7 and MDA-MB-231), 
cerebral glioblastoma (A-172, U-87MG), cerebral astrocytoma 
(CCF-STTG1), and hepatocellular carcinoma (Hep-G2) cells.57,160–164 
Moreover, terpenoids 70 found in species like O. quixos, O. bofo, 
O. opfera and others, exhibit potent cytotoxic and antitumoral 
effects, mediated through various mechanisms including the 
induction of apoptosis, inhibition of cell migration, DNA 
fragmentation, and cell cycle arrest.160 

 
6.2.2 Sesquiterpenes  

Sesquiterpenes and sesquiterpenoids constitute the most 
predominant terpenoid subclass in Ocotea species and are major 
components of the essential oils extracted from various Ocotea sp. 
In addition, several terpenoids could be also isolated from other 

different parts of Ocotea plant species, including bark, leaves and 
flowers.6,149 Thus, the most prevalent compounds are described in 
Fig. 26 and Tables S.5 and S5.1, including the spathulenol (57), α-
cadinol (58), elemol (59), bicyclogermacrene (60), caryophyllene 
oxide (61), globulol (62), α-humulene (63), β-caryophyllene (64), 1-
epi-cubenol (65), viridiflorol (66), trans-nerolidol (67), and α-
cadinene (68). 
 

 
Fig. 26     Widespread components of Ocotea sp. essential oils from the 

sesquiterpene class.  

The sesquiterpenoid 57 was identified in twenty-five different 
Ocotea sp., e.g. O.diospyriofolia, O. lancifolia, and O. nutans, while 
the isospathulenol was found only in O. dispersa. These 
compounds are tricyclic sesquiterpene alcohols, whose core 
skeleton is highly similar to the popular azulenes class. There are 
several aromatic medicinal plants in which the 57 is recognised as 
a major volatile constituent, for example, the essential oils of 
Psidium guineense, which is also a plant with 
ethnopharmacological significance, and popularly used for treating 
a range of inflammatory diseases, as the O. odorifera.45  In addition 
to the anti-inflammatory properties, 57 is also reported with 
antioxidant, antiproliferative, immunomodulatory and 
antibacterial effects in different studies in the literature.165–167 

Likewise, 58 has been found in twenty-three different Ocotea 
species, alongside other less concentrated isomers. Also, the 
sesquiterpenoid 58 and its isomers can be encountered in the 
essential oils of other plant genera and are recognized for their 
antioxidant, cytotoxic, and antimicrobial activities.50,167,168  
Additionally, the sesquiterpenes 64 and 67, and sesquiterpenoids 
59, 61 and 62 were identified in different isomeric forms and 
belonging to the chemical composition of several Ocotea species 
(Supplementary Table S6 and S6.1, available at Zenodo's link- 
https://doi.org/10.5281/zenodo.1067). Similarly, sesquiterpenoid 
66 was found in eleven Ocotea plant species, and it is noted for its 
anti-inflammatory action against leukocyte migration and also 
exhibits antioxidant and antibacterial activities.169 

 
6.3 Ocotea spp. essential oils  

Essential oils are complex mixtures of volatile organic 
compounds primarily biosynthesized in specialised plant cells or 
produced as byproducts during the distillation process, which 
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stands as the most common method for essential oil 
extraction.29,143,170  Some components of essential oils are heat-
derived artefacts, not originally present in the plant material but 
formed during distillation from chemical precursors in the plant’s 
metabolome. 143  Sometimes these artefacts are present in the raw 
plant material, however, their concentration might increase during 
the distillation extraction. Therefore, although essential oils are 
made from natural ingredients, not all components of essential oils 
are indeed from a natural origin.143 For instance, spathulenol, a 
sesquiterpene commonly found in Ocotea species, is produced 
from the bicyclogermacrene precursor, although it is naturally 
present in smaller quantities.143,171  These terpenoids can be found 
in varying proportions in Ocotea spp. essential oils.  

The family of the Lauraceae, to which Ocotea belongs, is highly 
valued for the essential oils produced by its plants. Ocotea species 
are predominantly aromatic, making significant contributions to 
the Lauraceae's reputation for producing a variety of volatile 
compounds.17,172 Despite numerous studies, only 48 out of 113 
chemically characterized species (~42.5%) have been examined for 
their essential oil composition. To date, 36 unique medium-weight 
terpenoids (e.g. sesquiterpenes and triterpenes) were isolated 
from Ocotea species. In addition, gas chromatography coupled 
with mass spectrometry (GC-MS) analysis has identified 456 
different compounds as constituents of Ocotea essential oils, 
including a range of different monoterpenoids. (Supplementary 
Table S6 and S6.1 respectively, available at Zenodo's link- 
https://doi.org/10.5281/zenodo.1067).   

Essential oils are utilized widely in conventional medicine and 
aromatherapy, and they are prevalent in cosmetics, dentistry, 
agriculture, food flavoring, cleaning products, and solvents, making 
them one of the industry’s most successful 
commodities.140,143,158,173 Their popularity in modern society is 
justified by their association with various desirable biological 
activities, such as antimicrobial, antioxidant, anti-inflammatory, 
and cytotoxic, and supported by extensive scientific 
research.158,162,169,172,174,175 

Moreover, terpenes represent the most abundant components 
in Ocotea spp. essential oils, with sesquiterpenes (64.6%) being the 
dominant subclass, followed by monoterpenes (28.5%). The 
qualitative and quantitative variations in these components can be 
influenced by factors such as genetic specificity, developmental 
stage, environmental stress, and adaptation to local climatic and 
soil conditions, as well as interspecies interactions.172  The essential 
oils of various Ocotea species also contain minor components like 
aldehydes (1.8%), phenylpropene (1.4%), phenylpropanoids 
(1.0%), alcohols (0.7%), ketones (0.6%), diterpenes (0.5%), and 
even smaller percentages of aliphatic and aromatic hydrocarbons, 
carboxylic acids, and esters (Supplementary Table S6 and S6.1, 
available at Zenodo's link- https://doi.org/10.5281/zenodo.1067). 

6.4 Ocotea spp. phenylpropanoids profile  

  Phenylpropanoids are a diverse class of compounds commonly 
found in plant essential oils, primarily derived from the aromatic 
amino acid phenylalanine, which after deamination, typically 
catalyzed by PAL, forms cinnamic acid, which is the basic building 
block for the vast array of phenylpropanoid compounds. These 
compounds are also prevalent in various plant parts, extending 
beyond just essential oils. Furthermore, safrole, a well-known 
phenylpropanoid, is notably prevalent across the Lauraceae family 
and was once suggested by Professor Otto R. Gottlieb as a 
chemotaxonomic marker for this family, due to its widespread 
occurrence in several species.10  Interestingly, to date, biosynthesis 

of safrole has only been confirmed in a few Ocotea sp., e.g. O. 
pretiosa, O. odorifera, O. cymbarum, O. opfera and O. 
zahamenensisan.45,172,176 Notably, safrole is the major component 
in O. odorifera essential oil, where its content can range 
dramatically from 30% to 90%. Despite its prevalence, based on the 
current data available since Gottlieb's initial studies, our review 
suggests that safrole may not serve as a reliable chemotaxonomic 
marker within the Ocotea genus. Nonetheless, it may still hold 
validity as a marker for other genera within the Lauraceae family. 
This underscores the complexity and variability of 
phenylpropanoid biosynthesis and their potential utility in the 
chemotaxonomic classification of related plant groups. 
   
6.5 Remarking considerations and recent advances 

Recent research has not only highlighted the anti-
inflammatory, cytotoxic and antitumor potential of the 
metabolome of Ocotea species but also demonstrated the 
significant role that Ocotea essential oils play in enhancing the 
efficacy of antibiotics against multidrug-resistant bacteria.177 The 
authors demonstrated that the essential oil extracted from O. 
odorifera and its primary component, safrole, can enhance the 
activity of macrolides and aminoglycosides antibiotics, such as 
erythromycin and gentamicin, respectively. This is achieved 
through the direct inhibition of efflux pumps, which are crucial in 
modulating bacterial resistance. Consequently, the combination of 
O. odorifera essential oil and safrole with antibiotics lead to 
improved antibacterial activity and clinically relevant effects 
against Staphylococcus aureus.177 

Furthermore, alongside their potential as therapeutic agents, 
recent applications of nanotechnology combined with NP present 
a promising alternative for ecological management. This approach 
serves as a potential substitute for synthetic anti-parasitic drugs 
and insecticides, which have been linked to significant 
environmental damage and adverse effects on non-target 
organisms, including the development of insect resistance.172,178–

180 In this context, recently, the potential of a nanoemulsion 
containing essential oil from O. pulchella was evaluated as a control 
agent in the schistosomiasis cycle. This nanoemulsion presented 
molluscicidal, ovicidal, and cercaricidal activities against the 
schistosomiasis transmitter Biomphalaria glabrata, causing the 
death of adults and preventing oviposition. The major component 
found in the leaves was myristicin (~29.0%), followed by 73 
(~17.2%) and 60 (~16.6%).172 Additionally, it showed relevant 
antiparasitic activity against Schistosoma mansoni, the infectious 
agent of schistosomiasis.172  

In terms of environmental management, in the search for safer 
and more sustainable insecticide formulations, nanotechnology 
associated with NP was also evaluated against the Aedes aegypti 
mosquito, which is a serious health problem in Brazil. An optimized 
nanoemulsion containing essential oil from O. indecora leaves was 
developed and tested for its larvicidal properties against A. aegypti 
larvae.172,178 The major constituent found in the essential oil was 
sesquirosefuran (~81.4%). The in-silico analysis suggested that the 
larvicide property is related to acetylcholinesterase enzyme 
inhibition. Notably, the nanoemulsion demonstrated no toxicity 
against the non-target organism Apis mellifera, ensuring safety for 
pollinator bees. Additionally, this formulation showed stability 
when stored at room temperature or refrigerated. 

7. Conclusion remarks and future prospective 
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In summary, this bibliographic review sheds light on the 
metabolome of the Ocotea genus. We have meticulously detailed 
the principal metabolic pathways that give rise to the bioactive 
scaffolds of alkaloids, lignoids, flavonoids, and terpenoids. This 
comprehensive overview of the chemical and biosynthetic 
characteristics provides a valuable resource for gaining insights and 
guiding further research targeting Ocotea species. Our review 
synthesizes data from 113 different Ocotea species and 928 
metabolites, including 174 alkaloids, 172 lignoids, 57 flavonoids, 
527 terpenoids (encompassing monoterpenes, sesquiterpenes, 
diterpenes, and triterpenes isolated from crude extracts and 
identified in essential oils) and 42 metabolites from less frequent 
classes. To our knowledge, this constitutes the most thorough 
examination of the genus available in the literature to date. The 
presented chemical data can aid in species identification, 
differentiation and chemophenetic studies, providing support for 
the integration of the chemical information with taxonomical and 
phylogenetic investigations in further evolutionary studies of the 
Ocotea genus. 

 This review also discusses the specific stereochemistry 
differentiation of alkaloids and the presence of common and 
uncommon NP classes among the Ocotea species. Moreover, the 
structural patterns and metabolites explored here hold significant 
promise for the pharmaceutical and medicinal chemistry 
communities. Promissory bioactive scaffolds were detailed 
corroborating the Ocotea species as a valuable source for drug 
discovery. The compiled data in this review can support further 
computational, chemical, and bioactivity investigations, and could 
be utilized to add complementary information for innovative 
chemometric and metabolomic models. Future investigations are 
likely to reveal even more intricate biosynthetic pathways and 
novel compounds. Ultimately, this review offers a comprehensive 
understanding of the Ocotea metabolome, providing valuable 
insights and laying the groundwork for continued advancements in 
various NP research fields related to the Ocotea plant species. 
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Introduction 

Natural products (NP) have been a valuable source of biologically 
active compounds all over the drug discovery history. The Lauraceae is a 
plant family that includes genera of high commercial and pharmaceu
tical importance worldwide, such as the Cinnamomum, Persea, Laurus, 
Ocotea, and others (Antonio et al., 2020; Gaudêncio and Pereira, 2015; 
Gottlieb, 1972; Marques, 2001). Renowned for their diverse morphology 
and intricate specialized metabolite composition, Ocotea species have 
reemerged as compelling candidates for bioprospecting in drug discov
ery research. With approximately 400 species, the Ocotea genus contains 
the potential to find therapeutic agents as demonstrated by important 
research in the literature (Brotto et al., 2013; de Alcântara et al., 2021; 
Marques, 2001; Salleh and Ahmad, 2017; Trofimov and Rohwer, 2020). 
Even though, the genus is considered few chemically and pharmaco
logically studied. The reasons for that knowledge gap can be attributed 
to the complex taxonomic issues in accurately identifying Ocotea species 
and the limited accessibility to these species, particularly in regions 
where they are naturally found (Antonio et al., 2020; Penagos Zuluaga 
et al., 2021). 

The traditional people of Peru and Equator have used an extract of 
O. quixos as a local anesthetic and natural healing agent. Indeed, sci
entific investigations revealed anti-bacterial and anti-inflammatory 
properties for extracts of this specie (Bruni et al., 2004; Costa et al., 
2015). In Brazilian traditional medicine, the decoction of O. odorifera 
leaves has been traditionally employed for treating 
inflammatory-related conditions, which has shown a dual mechanism of 
action that effectively inhibits both edema formation and neutrophil 
recruitment in vivo experiments (de Alcântara et al., 2021). Moreover, 
O. diospyrifolia, O. bullata, O. notata, and O. cymbarum have also 
exhibited anti-inflammatory effects or their isolated metabolites. These 
findings highlight the anti-inflammatory potential within the Ocotea 
genus, albeit limited to a small number of species when considering the 
overall size of this genus. Thus, it underscores the importance of further 
bioprospecting efforts to explore the therapeutic possibilities of Ocotea 
spp, particularly the anti-inflammatory potential (Costa et al., 2015; 
Silva et al., 2021; Zschocke et al., 2000; Ferreira et al., 2023). 

Compounds inhibiting the arachidonic acid (AA) inflammatory 
signaling pathway, including non-steroidal anti-inflammatory drugs 
(NSAIDs), have been extensively studied in pharmaceutical research. 
NSAIDs exert their effects by targeting cyclooxygenase enzymes (COX), 
reducing the release of prostaglandins (PGs), such as prostaglandin E2 
(PGE2), which play a crucial role in inflammatory processes (Leslie, 
2015; Meirer et al., 2014; Parente, 2001). Despite progress in the last 
two decades, there remains a need for novel anti-inflammatory agents 
with enhanced efficacy, different mechanisms of action, and reduced 
risk of adverse reactions, given the limited long-term effectiveness of 
current treatments for numerous inflammatory disorders. Thus, ongoing 
investigations in this field aim to expand therapeutic options, addressing 
unmet medical needs and providing potential solutions for managing 
inflammation-related conditions (Chagas-Paula et al., 2015a; Chagas-
Paula et al., 2015b; Ding et al., 2018; Funk, 2001; Meirer et al., 2014). 

Metabolomics studies have emerged as a systematic approach to 
analysing endogenous metabolites in various samples, offering 
comprehensive insights into physiological, pathological, and pharma
cological aspects (Alarcon-Barrera et al., 2022; Zhang et al., 2020). In 
metabolomics, a combination of analytical techniques, including liquid 
chromatography coupled with high-resolution mass spectrometry 
(LC–HRMS), are commonly used to investigate the metabolome. 
Which, by the way, encompasses all low-weight molecules found in 
samples (Fenaille et al., 2017; Vinayavekhin and Saghatelian, 2010; 
Zhang et al., 2020). One notable advancement in LC–HRMS is the 
application of data-independent acquisition (DIA), which enables un
biased and comprehensive analysis of metabolites in a single chro
matographic run (Fenaille et al., 2017; Tsugawa et al., 2015). 

The DIA-MS approaches offers improved data coverage, allowing for 

the search of a wider range of metabolites in metabolomics studies, 
including a few abundant compounds from complex samples, such as 
crude plant extracts (Azmi et al., 2021; Rao Gajula and Nanjappan, 
2021). Integrating metabolomics approaches such as data treatment and 
multivariate statistical analysis (MSA) it is possible to explore bioactive 
markers, uncover novel chemical compounds, and gain valuable bio
logical insights into the metabolome (Xi et al., 2015; Zanatta et al., 
2021). The continuous advancements in LC-MS instrumentation 
contribute to improved sensibility, resolution, and as a consequence also 
complexity, albeit expanding the possibilities for discovering novel 
compounds, and new bioactivities for those already known in a lesser 
amount of time (Ebbels et al., 2023; Perez de Souza et al., 2021; Spicer 
et al., 2017). Herein, we employed LC–HRMS-based metabolomics with 
the DIA (MSE type) approach to explore bioactive markers of Ocotea 
species, with a focus on their ability to inhibit PGE2 release. This study is 
the first bioprospecting report on the chemical and bioactivity of several 
Ocotea species. 

Material and methods 

Plant materials, drugs, and reagents 

Considering the taxonomic issues, complicated access to endemic 
Ocotea species, in addition to ecological aspects of threatened species in 
Brazil (Antonio et al., 2020; Martins et al., 2014; Penagos Zuluaga et al., 
2021), 1 – 3 leaves were donated from 60 vouchers specimen deposited 
at Brazilians herbariums of Ouro Preto (OUPR, Federal University of 
Ouro Preto - UFOP) and Leopoldo Krieger - Centro de Ensino Superior de 
Juiz de Fora (CESJ, Federal University of Juiz de For a - UFJF). The 
research was registered on the National System for Governance of Ge
netic Heritage and Associated Traditional Knowledge (SisGen # 
A5A8F67). The Ocotea samples received an identification code (ID) ac
cording to their species names and herbarium of origin. The ID names 
and additional information are shown in Supplementary Table S1. 

Dexamethasone and indomethacin were acquired from Eurofarma® 
(São Paulo, SP, Brazil). Chloramphenicol (CAP) and PGE2 standards, 
together with E. coli O26:B6 lipopolysaccharides (LPS) were purchased 
from Sigma Aldrich® (St Louis, MO, USA). All solvents used were high- 
performance liquid chromatography (HPLC) grade, including hexane, 
methanol, ethanol, and acetonitrile Sigma Aldrich® (St Louis, MO, 
USA). The formic acid was supplied by Sigma-Aldrich® (St Louis, MO, 
USA). Ultrapure water was purified using a Millipore Milli-Q® water 
purification system (Millipore, Bedford, MA, USA). The liquid nitrogen 
was obtained from Linde® (Pullach, Munique, Germany). 

Crude extracts preparation 

The 60 different Ocotea ssp. samples were crushed using pistil and 
liquid nitrogen until pulverization. To the powdered material (20 mg), 
1.7 ml of ethanol/water, 7:3 (v/v) was added to extract the most polar 
and semi-polar compounds. The samples were placed in a warm ultra
sound bath (35 ◦C) for 15 min (170 W, 50 kHz, L100 Schuster), and then 
centrifuged at 22 ◦C and 112 rcf (G-force). To remove fatty substances, 
the supernatants were partitioned with hexane (2 × 300 µl). After, the 
extracted samples were filtered through polytetrafluoroethylene (PTFE 
– pore size 22 μm) syringe filters and dried using speed vacuum equip
ment for 3 h at 40 ◦C. The samples were kept in a freezer (− 20 ◦C) until 
the moment of the analyses. The dried extracts were weighted and the 
respective yields were calculated (Supplementary Table S2). 

Ex-vivo anti-inflammatory evaluation 

The ex-vivo anti-inflammatory experiment in human blood was per
formed according to (Rosa et al., 2021; Nicácio et al., 2022; Santos et al., 
2022; Silva et al., 2023). The experiment was approved by the research 
ethics committee of the Federal University of Alfenas (89,325, 
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818.1.0000.5142, approved on 15th August 2022) and all the donors 
provided written informed consent before blood collection. The positive 
controls dexamethasone (DEX) and indomethacin (IND) were tested at 1 
µg/ml (final well concentration). The Ocotea extracts were assayed at 10 
µg/ml (final well concentration). A phosphate-buffered saline 1x (PBS - 
pH 7.2; 0.15 M chloride; 0.01 M phosphate) was used for dilutions. The 
LPS at 100 µg/ml (final well concentration) was used as the inflamma
tion inducer agent. Negative control (PBS 1x) was performed to estimate 
the maximum amount of PGE2 produced in the inflammatory process. 
The plating sequence consisted of 25 µl of each Ocotea extract, 200 µl of 
blood in all wells and, 25 µl of LPS solution. Following, the 96-well 
plates were incubated for 24 h in a 5% CO2 atmosphere at 37 ◦C. 
After incubation time, the plates were centrifuged for 5 min at 157 rcf 
and 4 ◦C. Then, 100 µl of plasma was removed from the blood of each 
well and then frozen until posterior analyses. 

Prostaglandin E2 (PGE2) quantification by UPLC-MS/MS 

The PGE2 quantification was done according to the developed and 
validated method (Rosa et al., 2021). 100 µl of each plasma sample was 
spiked with 500 µl of the precipitating agent (ACN/MeOH, 1:1, v/v) and 
centrifuged (4025 rcf, 4 ◦C) for 10 min. The supernatant was transferred 
to a polypropylene tube containing 4.5 ml of ultrapure water. The 
samples were loaded on an LC-18 cartridge of solid-phase extraction 
(SPE, 500 mg, #57,012 Supelco) after conditioning with 2 ml of MeOH, 
followed by 2 ml of acidified ultrapure water containing 0.1% of acetic 
acid. The cartridges were washed with 2 ml of aqueous solution with 
0.1% of acetic acid, the PGE2 analyte was eluted into polypropylene 
tubes using a 1.8 ml methanolic solution with 0.1% acetic acid, and later 
the eluted methanolic fraction was evaporated to dryness. Chloram
phenicol at the concentration of 25 ng/ml was used as an internal 
standard (IS). 

The quantification was done by ultra-performance LC coupled to 
tandem mass spectrometry (UPLC-MS/MS) analyses carried out using 
system model 8030 (Shimadzu®, Kyoto, Japan) equipped with a triple- 
quadrupole mass analyser operating in the negative mode. The controls 
and samples were injected (20 µl) in the chromatographic system con
taining a column (1.7 μm, 2.1 × 100 mm, Kinetex® C18) maintained at 
30 ◦C. The mobile phase consisted of (A) ultrapure water acidified with 
formic acid at 0.1% and (B) acetonitrile (100%) at a constant flow rate of 
300 µl/min. The gradient elution was established as follows: 40% of B 
and 60% of A until 100% of B (0 – 3 min), which remained in this 
configuration for up to 4 min. After, the method returned to the initial 
mobile phase (40% of B) for 0.5 min, followed by 1 min of re- 
equilibration. The overall run time was 8.5 min. The source and MS 
parameters were as follows: nebulizing gas nitrogen at flow 2 l/min, 
drying gas nitrogen at flow 15 l/min, interface voltage 3.5 kV, DL 
temperature 250 ◦C, oven temperature 35 ◦C, detector voltage 2.44 kV 
and collision gas argon at 230 kPa. The transitions for the PGE2 and the 
IS are shown (Table 1). 

Data acquisition was performed using LabSolutions® software. The 
linear equation of the calibration curve (y = 0.04341*x + 0.07256) 
obtained a correlation coefficient (R2) = 0.9996, where y is the relative 
area of PGE2/IS and x is the concentration of PGE2 measured in ng/ml. 
The PGE2 concentration in ng/ml and the percentage of inhibition were 
calculated for each evaluated Ocotea crude extract sample. The results of 
PGE2 concentration were also expressed as the mean ± standard error 
(SD) and statistically analysed via one-way analysis of variance 

(ANOVA) followed by Dunnett’s multiple comparison tests on GraphPad 
Prism® 9.1.2 (GraphPad software©, La Jolla, CA, USA). 

Metabolomic analysis – LC–HRMS 

The analysis of plant extracts was performed on an ultra- 
performance liquid chromatography coupled to an electrospray ioniza
tion source and a quadrupole time-of-flight mass analyser (UPLC-ESI- 
QTOF, Xevo-qTOF/MS, Waters Corp., Milford, USA) instrument. The 
analysis was set for DIA, more specifically, the mass spectra of MSE type 
from all precursor ions. DIA is an MS data acquisition approach that 
involves systematically fragmenting all detected ions in a sample 
without relying on predefined precursor ion selection. DIA provides 
comprehensive coverage of the metabolome by acquiring fragment ion 
spectra for all ions in the sample (Rosnack et al., 2016; Tsugawa et al., 
2015; van der Laan et al., 2020). 

The analysis was performed using Masslynxs™ MS Software (Waters 
Corp., Milford, USA). An aliquot of 5 µl of each Ocotea extract sample 
was injected, and the separation occurred in a reversed-phase column 
(C18, 1.8 μm, 100 × 2.1 mm, ACQUITY UPLC® HSS T3) maintained at 
40 ◦C. The mobile phases consisted of (A) acidified water with 0.1% 
formic acid, and (B) pure acetonitrile, delivered at a 0.5 ml/min flow 
rate. The chromatographic run was as follows: 1% of B in 0.1 min, 15% 
of B in 7.5 min, 80% of B in 8.5 min, 99% of B in 8.6 min, and 1% of B 
until 10 min. 

The ESI operated in the positive and negative ionization modes. The 
mass spectrometer parameters were executed with alternative high and 
low-energy scans. The low CE was set at 3 eV and the high CE was 
ramped from 25 to 40 eV. Cone gas flow, 30 l/h; desolvation tempera
ture, 300 ◦; source temperature, 120 ◦; and desolvation gas flow, 600 l/ 
h. The mass scan range was set at m/z 50 to m/z 1000 for functions 1 and 
2. The MS data were collected in profile mode, using the lock spray for 
calibration, to guarantee accuracy and reproducibility. Leucine- 
encephalin was used as a lock mass, identified by the m/z 554.2622 
(ESI− ) and m/z 556.2768 (ESI+), which was acquired every 10 s. 

For the chromatographic method development, an analytical quality 
control (QC) sample was prepared by gathering together 10 μl of each 
Ocotea sample extract (1 mg/ml). Samples were analysed randomly, 
with one replicate, one blank, and the QC at the beginning, middle, and 
end of the chromatographic batch. 

Data treatment and chemical annotation, considering MSE spectra 
for untargeted metabolomics, were performed using the UNIFI scientific 
information system software 1.8.1 (Waters Corp., Milford, USA), which 
combines data acquisition, processing, visualization, and compliance of 
the raw data (Rosnack et al., 2016; Wang et al., 2019). The raw data 
treatment using UNIFI software included peak detection, alignment 
processing algorithms for chromatographic peak corrections, deconvo
lution, deisotope, and baseline correction. A peak intensity threshold 
was set as 250 counts for high-energy fragment detection and 500 counts 
for low-energy. The noise was established as 10.000 peaks per channel 
and the error mass tolerance of 10 ppm. RT tolerance was defined as 0.3 
min. For adduct search, the positive mode included Na+ and K+, and the 
negative mode Cl− , HCO2

− . The area was normalised regarding the total 
ion count, to generate a data matrix with the m/z value, retention time 
(RT) and the normalized peak area. The raw data of positive (ESI+) and 
negative (ESI− ) modes of ionization were treated separately. 

Univariate and multivariate statistical analyses (MSA) 

The data containing peak area, m/z and RT processed by UNIFI 
software was exported in .xlxs Excel reading format. The spreadsheet 
was imported through MetaboAnalyst 5.0 software (Montreal, QC, 
Canada, https://www.metaboanalyst.ca/) for the MSA. The data were 
quantile normalized and mean-centered scaled before the unsupervised 
and supervised multivariate analysis. The metabolic profile was initially 
analysed by unsupervised statistical analyses using initially principal 

Table 1 
The single reaction monitoring (SRM) parameters in the negative mode for PGE2 
and the internal standard chloramphenicol (CAP). Q1, CE, and Q3 in eV.  

Compound Transition (m/z) Q1 CE Q3 

CAP 320.90 → 152.10 16 20 29 
PGE2 351.10 → 271.30 13 18 28  
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component analyses (PCA), hierarchical cluster analyses (HCA), and 
heatmaps. Subsequently, data were supervised by the anti-inflammatory 
activity using the partial least squares regression - discriminant analysis 
(PLS-DA). 

Variables important in projection (VIPs) with values >1 and positive 
correlation coefficients (CorrCoef) from PLS-DA were used to evaluate 
the difference between active and inactive samples (Chagas-Paula et al., 
2015a; Cragg and Pezzuto, 2016; Roux et al., 2011). Permutation tests 
(n = 100) were additionally implemented to ensure the reliability of the 
metabolomics model. Moreover, for avoiding misleading potential me
tabolites from possible outlier samples in the MSA models, a univariate 
statistical method of classical volcano plot (CVP) was also applied. CVP 
is based on both p values from a t-test and fold-change (FC) values. Thus, 
for the CVP analysis, a metabolite was only considered statistically 
significant if the p-value 〈 0.05 and log2 FC 〉 1.5 (Kumar et al., 2018). In 
addition, the false discovery rate (FDR) method was applied to rank the 
obtained p-values from low to high, multiplying each p-value by the 
number of variables after the cut-off (p-value 〈 0.05 and log2 FC 〉 1.5, n 
= 55 variables for positive and n = 32 for negative), and dividing by 
their order of rank according to the Benjamini-Hochberg procedure 
(Benjamini and Hochberg, 1995; Zanatta et al., 2021) 

Overall, the RT–m/z pairs referent the metabolites that acquired VIP 
> 1, log2 FC values > 1.5, p-value < 0.05, positive CorrCoef, and FDR (q- 
value ≤ 0.05) were considered potentially valid bioactive markers of 
this untargeted metabolomics study (Chagas-Paula et al., 2015a; Kumar 
et al., 2018; Wu et al., 2018; Zanatta et al., 2021). 

Chemical annotation 

Thus, through univariate and multivariate statistics, biological 
experimentation and metabolomic data, we were able to annotate po
tential bioactive markers. The use of MSE for data acquisition was crucial 
in allowing us to detect and analyze all MSn fragments from the pre
cursor ions (MS1) of the metabolites of interest. The UNIFI standard 
database library and the dictionary of natural products (DNP) were 
employed to assist in the annotation of the compounds (Rosnack et al., 
2016; Zanatta et al., 2021). To enhance confidence in the annotation of 
these markers, their m/z values and fragmentation patterns were 
manually compared to those in the global natural product social mo
lecular Networking (GNPS) spectral library as well as published MS/MS 
data in the literature. In addition, the strategies used for molecular 
formula (MF) determination were based on the scientific tool i-FIT 
(Norm), which is a core methodology for the analyses of small molecular 
weight metabolites obtained through TOF instrumentation. The list of 
the proposed elemental compositions was according to the highest 

agreement of theoretical isotopic pattern and lower error of mass in 
mDa. The low i-FIT Norm score is better (Iglesias, 2013; Katchbor
ian-Neto et al., 2020). In cases where alkaloids did not have matches in 
the GNPS database, their identification was based on a comprehensive 
review of electrospray ionization (ESI) fragmentation patterns as 
investigated by (Demarque et al., 2016; Qing et al., 2020) supported by 
spectral literature data. 

Following the guidelines set by the metabolomics standards initia
tive (MSI), the identification level in this study was categorized as level 
two for the annotated alkaloids and three for a few other compounds. 
Level two identification requires the presence of spectral matching with 
an authentic reference standard, and thus the fragmentation patterns 
consistent with the proposed compound structure. This approach en
sures increased chemical information regarding the annotated metabo
lites (Creek et al., 2014; Spicer et al., 2017; Sumner et al., 2007). On the 
other hand, level three identification relies on the match of mono
isotopic mass and chemical formula, providing precise chemical class 
determination, while not yielding detailed structural information. By 
employing both level two and level three identification approaches, this 
study ensures a comprehensive analysis of the metabolome. 

Results and discussion 

Anti-inflammatory ex vivo evaluation 

The PGE2 release is one of the main targets of anti-inflammatory 
drugs with a main role in a wide range of inflammatory diseases that 
rely on the COX activation cascade pathway, and the release of PGE2 
inhibition is a valid therapeutic strategy for drug development (Chini 
et al., 2020; Majumder et al., 2014; Salehifar and Hosseinimehr, 2016). 
The positive controls DEX (4.61 ± 2.57 ng/ml of PGE2) and IND (1.78 
± 0.59 ng/ml of PGE2) were considered statistically similar to each 
other and different from the negative control (NEG) (197.98 ± 22.07 
ng/ml of PGE2) (p < 0.0001), giving confidence to the screening (Fig. 1). 
According to the one-way ANOVA and Dunnett’s multiple comparisons 
post-test, 49 out of the 60 Ocotea extracts (81.7%) evaluated were sta
tistically different from the negative control (p < 0.0001; Fig. 1 and 
Table 2), and thus able to inhibit of PGE2 release, thereby inhibiting the 
cyclooxygenase (COX) pathway, directly or indirectly. Thus, these re
sults themselves support and corroborate the anti-inflammatory activity 
described by the genus. Furthermore, a subsequent post-test indicated 
10 out of the 49 active Ocotea species showed no statistical difference 
compared to the reference anti-inflammatory drugs (DEX and IND; p >
0.05; Fig. 1). 

Thus, these 10 Ocotea spp. were considered the most promissory anti- 

Fig. 1. Comparison of 60 Ocotea extracts and 
their ex vivo anti-inflammatory activity through 
PGE2 inhibition release screening levels (n = 3 
replicates for samples and 6 for controls), in 
which 49 extracts were statistically different to 
the negative control (NEG, PBS + blood + LPS). 
Note: The results were analysed by one-way 
ANOVA, followed by Dunnett’s multiple com
parison test. Bars represent mean ± SD. # in
dicates statistical difference to (NEG) control, 
where p ≤ 0.05. Arrows indicate the 10 most 
active samples without a significant difference 
when compared to the positive control, the 
reference drugs: dexamethasone (DEX) and 
indomethacin (IND), p > 0.05.   
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inflammatory species (p> 0.05 compared to current anti-inflammatory 
drugs): PC II 1 – O. pulchella, SX I - O. spixiana, TA I – O. tabacifolia, 
TE II 1 - tenuiflora, TL II – O. teleiandra, TR I - O. tristis, VA I - 
O. vaccinioides, VI II- O. villosa, VL II – O. velutina and VZ II 2 – 
O. velloziana. To date, this is the first anti-inflammatory evidence for 
those species, besides the other 35 active Ocotea spp, except for the 
O. odorifera (78.8% PGE2 inhibition), O. pretiosa (76.2% PGE2 

inhibition), O. diospyrifolia (74.5% PGE2 inhibition), and O. notata 
(65.5% PGE2 inhibition), which had previous scientific evidence of anti- 
inflammatory activity (Costa et al., 2015; de Alcântara et al., 2021; Silva 
et al., 2021), and thus was also corroborated by our results. Therefore, 
by using an ex vivo anti-inflammatory activity we have demonstrated for 
the first time in literature the anti-inflammatory potential of other 45 
different Ocotea spp. 

Principal component analyses (PCA) 

Normalization is a critical step in metabolomics analysis that aids to 
mitigate systematic bias, such as the peak areas from different analytical 
measurements before the statistical analysis. By removing these varia
tions, the data matrix is transformed into a more Gaussian-type distri
bution, allowing more accurate comparisons of metabolites among the 
different samples of the dataset (Bartel et al., 2013; Katajamaa and 
Orešič, 2007). Thus, after quantile normalization and mean centering 
the data, PCA was appropriately applied to visualize the general samples 
clustering trends of the dataset and to verify the metabolomic charac
teristics of the extracts, independently of their class. In the score plot, the 
samples near each other have similar metabolite content and thus are 
clustered together, whereas observations far away from each other are 
dissimilar (Trygg et al., 2007; Xi et al., 2015). The PCA can assist in 
reducing the dimensionalities of complex datasets and can provide 
discrimination of the score observations, by evidencing groupings, and 
outliers and by ensuring reproducibility (Chagas-Paula et al., 2015a; 
Yuliana et al., 2011). 

The PCA score plot analysis demonstrated that the BR II and CL I 
samples are outliers in our model, and thus they were excluded from the 
subsequent multivariate analysis. Moreover, the reproducibility of data 
in metabolomics experiments is crucial to ensure reliable results. To 
check that, after filtering the data (mean intensity values), the 3D PCA 
scatter plots were analysed. It indicated the analytical replicates (QC 
controls and VI II) clustered at near spots to each other in both negative 
and positive ionization modes, respectively (Fig. 2). The QC samples 
clustered close to the plot center for all PC components indicated the 
satisfactory fitness of the unsupervised metabolomics exploratory 
analysis since is as a mix of samples. Thus, these results taken together 
demonstrated that the analyses were reproductive and the data treat
ment was accurate (Fig. 2). The PCA, with 5 components, obtained R2 =

0.546 and 0.526 (ESI+ and ESI− ) indicating that the models were well- 
fitted since R2 was > 0.5 (Chagas-Paula et al., 2015a; Yuliana et al., 
2011; Zanatta et al., 2021). 

Partial least square – discriminant analyses (PLS-DA) 

In this study, the MSA approach was employed to visualize the 
chemical differences among the samples and identify potential markers 
for differentiation into two groups: active and inactive samples. Spe
cifically, PLS-DA was applied as it is a powerful dual matrix classifica
tion model that establishes fundamental relationships between multiple 
variables using linear regression models. In our case between the 
metabolomic data (X data, m/z-RT pair and peak area) and the Y vari
ables (active and inactive samples; Fig. 3). As active samples were 
considered the 10 most active extracts, which showed significant anti- 
inflammatory effect compared to the negative group (p < 0.05, Fig. 1) 
and similar effect compared to reference anti-inflammatory drugs (p >
0.05, Fig. 1). As inactive samples were considered those samples without 
any anti-inflammatory activity, which did not show significant differ
ence from negative control (p > 0.05, Fig. 1). This method enabled us to 
effectively to identify the key discriminant features in metabolomic 
profiles according to the biological response of interest (Chagas-Paula 
et al., 2015a; Xi et al., 2015; Yuliana et al., 2011). 

The PLS-DA was applied and the three-dimensional data (m/z / RT 
/peak area) were supervised by the anti-inflammatory profile of the 
samples from ex vivo results. The developed model with 4 components 

Table 2 
Percentage of PGE2 releasing inhibition for the 60 Ocotea species.  

Samples 
IDs 

% PGE2 
inhibition 

[PGE2] 
ng/ml 

Samples 
IDs 

%PGE2 
inhibition 

[PGE2] 
ng/ml 

NEG 0 197.98 ±
22.07 

LN II 36.9 124.91 ±
10.44 

DEX 97.7 4.61 ±
2.58 

LO II 53.6 91.78 ±
17.60 

IND 99.1 1.78 ±
0.59 

LX I 0 258.94 ±
61.10 

AM II 29.5 139.54 ±
15.22 

MI II 67.3 64.70 ±
14.81 

AU II 15.8 166.57 ±
16.21 

MU I 71.6 56.18 ±
7.77 

AY II 61.8 75.57 ±
6.49 

NE II 60.8 77.55 ±
8.95 

BA II 5.5 186.99 ±
14.29 

NI I 73.0 53.38 ±
8.84 

BI II 57.0 84.99 ±
13.05 

NO II 65.5 68.38 ±
10.87 

BR II 0 214.52 ±
6.33 

NT I 51.1 96.80 ±
11.45 

CA I 74.1 51.33 ±
10.71 

NU I 74.0 51.41 ±
12.65 

CE II 49.9 99.22 ±
2.82 

OD II 78.8 41.94 ±
15.74 

CJ II 30.4 137.81 ±
21.72 

PA II 71.4 56.68 ±
2.92 

CL I 51.9 95.15 ±
38.87 

PC II 1 87.9 23.89 ±
9.87 

CM II 70.7 57.92 ±
16.28 

PE I 73.2 53.07 ±
4.58 

CO II 43.9 111.05 ±
19.61 

pH II 74.3 50.91 ±
5.23 

CT II 42.0 114.82 ±
38.67 

PL II 63.6 72.04 ±
10.26 

DI I 76.4 46.75 ±
5.76 

PO I 62.5 74.27 ±
18.94 

DO II 74.5 50.46 ±
15.36 

PR I 72.8 53.84 ±
12.24 

DV II 73.2 53.00 ±
10.99 

PT II 76.2 47.16 ±
23.32 

EL II 74.1 51.31 ±
13.00 

PU I 74.8 49.85 ±
24.48 

FE I 68.9 61.44 ±
20.97 

SP I 75.5 48.49 ±
20.77 

GA II 40.4 117.89 ±
45.33 

SX I 85.2 29.20 ±
7.65 

GL I 28.7 141.23 ±
26.33 

TA I 82.2 35.11 ±
9.43 

GU II 5.0 188.07 ±
109.60 

TE II 1 81.9 35.72 ±
3.76 

GZ II 13.3 171.56 ±
62.51 

TL II 2 80.1 39.41 ±
13.07 

HY I 63.6 72.09 ±
14.02 

TR I 83.1 33.50 ±
1.52 

IN II 44.3 110.28 ±
17.12 

VA I 84.5 30.65 ±
12.44 

KU I 39.5 119.73 ±
12.23 

VI II 92.8 14.09 ±
5.09 

LA II 45.4 108.06 ±
15.11 

VL II 90.7 18.37 ±
12.36 

LC II 22.1 154.21 ±
36.03 

VR I 76.4 46.70 ±
16.32 

LF II 65.9 67.36 ±
12.66 

VZ II 2 90.2 19.37 ±
6.18 

LG I 24.1 150.21 ±
32.54     
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and 2 components were well fitted for ESI+ for ESI− data, respectively, 
since obtained R2 = 0.968 and 0.940. Also, the models showed to be 
robust to prediction since obtained Q2 = 0.581 and 0.509, respectively 
for ESI+ for ESI− data. For metabolomics studies, considering their 
complex and large dataset, values of Q2 > 0.5 indicate robustness 
(Chagas-Paula et al., 2015a; Yuliana et al., 2011). 

In parallel, Hotelling’s T2 ellipse in a PLS-DA score plot allowed the 
identification of two active outliers in the negative mode (TE II 1 and TL 
II 2) and (VA I and VL II), in the positive ionization mode. Thus, these 
samples were excluded from MSA (Fig. 3). The further 100-permutation 
tests performed allowed the estimation of adjusted significance levels 
tests (p = 0.04) independently of the metabolomic variables and ensured 
that the model validity and predictability is not over-fitted (Peluso et al., 
2021). Additionally, it was possible to determine the VIP values, which 
are the m/z-RT pair of the dataset. Those VIP values > 1 are estimated as 
the most important variables to differentiate the samples according to 

their respective class, in our case, active and inactive (Chagas-Paula 
et al., 2015a; Katchborian-Neto et al., 2020; Yuliana et al., 2011). 

Univariate statistical analysis – volcano plot 

Metabolomics studies commonly generate a substantial amount of 
complex data that requires computational mining for proper interpre
tation. After data acquisition through hyphenated analytical techniques, 
the processing through analytical software is mandatory, which gener
ally requires MSA for evaluation of the high metabolomic coverage. 
These steps aim to interpret the proper correlation of the biological 
response with minimal possible bias (Chagas-Paula et al., 2015a; Kos
mides et al., 2013; Peluso et al., 2021). 

The volcano univariate analysis is a robust statistical approach that 
can be integrated into MSA to reach an appropriate threshold cut-off for 
the annotated bioactive markers and can be used to find potential 

Fig. 2. Score plot of principal component analyses (PCA) of metabolomic data of UPLC–HRMS analysis in ESI+ (A) and ESI− (B), hotelling ellipse = 95%, 5 
components, R2 = 0.546 and R2 = 0.526, respectively. QC – Quality control; VI II – O. villosa replicates. 
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outliers (Peluso et al., 2021). The classical volcano plot performed 
corroborated the bioactive markers pointed out by MSA and indicated 3 
additional metabolites, two in the positive (m/z 386.39861_RT 7.43 
min; m/z 189.06885_RT 3.04 min) mode and one in the negative (m/z 
395.15510_RT 2.31) that acquired p-value < 0.05 and log2 FC values >
1.5. Although, the ions in the positive mode at m/z 189 and m/z 386 
scored VIP values < 1. Thus, that explains why they have not figured out 
among the MSA positively correlated bioactive markers, besides their 
positive correlation with the anti-inflammatory activity. In addition, no 
hits on the searched databases were found for the ions at m/z 386 (M +
H)+ and at m/z 395 (M-H)− , indicating potential unknown compounds 
(Fig. 4; Table 4). 

Additionally, a heatmap and FDR calculations were performed for all 
significant metabolites from univariate and multivariate statistical 
analysis combined (n = 17, FDR < 0.05) between the active and the 
inactive anti-inflammatory groups of Ocotea spp. (Fig. 5, Tables 3 and 4). 
A clear separation in metabolomic profiles was observed, as indicated by 
the red and green colours (Fig. 5), representing higher and lower-peak 
areas. In addition, the chemical scaffolds of the bioactive markers 

level annotated 2 by MSA are shown. 
Furthermore, Fig. 6 demonstrates the overlapped LC–HRMS meta

bolic fingerprint from the 10 most active Ocotea species. The fingerprints 
are displayed as total ion chromatograms (TIC) in the positive mode, as 
based peak ions (BPI). The classes of the main annotated bioactive 
markers annotated at confidence level 2 according to MSI are demon
strated, including three alkaloid subclasses: aporphines (dehy
dronuciferine, laurelliptine, boldine, dicentrine and caaverine), 
benzylisoquinolines (armepavine and laudanine), and the phenan
threnes (argentinine). Details of the biomarkers including m/z, MF, mass 
error, VIP values, and adjusted q-values are shown in Table 3 (Level 2 
annotation) and Table 4 (Level 3 annotation + unknown). 

The literature is filled with significant in vitro and in vivo studies 
evidencing the anti-inflammatory and antipyretic effects of boldine, as 
well as other benzylisoquinoline and aporphine alkaloids (Backhouse 
et al., 1994; Peng et al., 2019; Yang et al., 2018). The aporphine isomers 
of boldine and laurelliptine aporphines were annotated in both ioniza
tion modes for different Ocotea species and were indicated by MSA as 
bioactive markers. Our findings support a recent study highlighting the 

Fig. 3. Score plot of PLS-DA model indicating the discrimination of the active (green) and inactive sample groups (red), quartile normalized. (A) Positive mode: R2 =

0.968 and Q2 = 0.581. (B) For negative mode R2 = 0.940 and Q2 = 0.509. The highest fifteen correlation scores are displayed for m/z / RT pairs among the two 
groups. Note: QC – Quality control; VI II – O. villosa replicates. 

A. Katchborian-Neto et al.                                                                                                                                                                                                                    



Phytomedicine 120 (2023) 155060

8

anti-inflammatory effect of reticuline, a benzylisoquinoline alkaloid, in 
combination with boldine. The study demonstrated that this combina
tion reduced paw edema induced by carrageenan and inhibited PGE2 in 
a time and dose-dependent manner. Notably, the combined adminis
tration of boldine and reticuline exhibited a synergistic effect, leading to 
enhanced efficacy compared to their individual use of the alkaloids 
(Backhouse et al., 1994; Peng et al., 2019; Yang et al., 2018). 

In this study, boldine exhibited a positive correlation with anti- 
inflammatory activity and VIP values > 1. On the other hand, reticu
line showed a positive correlation but had a lower VIP value of 0.56 in 
the PLS-DA model of the positive mode, and a p-value > 0.05 in the 
univariate analysis. This suggests that the presence of reticuline alone 
does not strongly differentiate the active and inactive groups, and its 
concentration varied significantly among samples. While reticuline 

Fig. 4. Classical volcano plots were generated for both positive and negative modes using the original PLS-DA dataset obtained from UPLC–HRMS data processing. 
The univariate statistical analysis revealed three new markers, one in the negative mode and two in the positive mode (395.1551, m/z 386.3986, and m/z 189.0685, 
respectively). Additionally, the other 14 previously identified bioactive markers by MSA were confirmed. The statistical cut-off for considering metabolites as 
significantly different in the volcano plot was defined as fold change > 1.5 and p-value < 0.05. 
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showed a positive correlation with anti-inflammatory activity, it is not 
one of the main compounds strongly associated with these effects. On 
the other hand, the chemically similar benzylisoquinolines, armapevine 
and laudanine, demonstrated VIP values greater than 1, a positive cor
relation, and a significant q-value below 0.05 (FDR). In addition, 

regarding the chemical composition of the extracts, it is becoming clear 
that isoquinoline derivatives, especially benzylisoquinoline and apor
phines represent an interesting and potentially useful group of anti- 
inflammatory potential scaffold (Fig. 5 and Table 3). It is worth noting 
that the anti-inflammatory activity of Ocotea species may be attributed 

Fig. 5. Heatmap plot for the 17 differential markers of Ocotea species (red indicates high expression and green indicates low expression) using normalised peak area 
(square root transformation and range scaling by mean-centered and divided by the range of each variable). Representation of each chemical scaffold annotated is 
shown: aporphine, benzylisoquinoline and phenanthrene alkaloids, indicated by both univariate and multivariate analysis. 
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Table 3 
The list of potential bioactive markers annotated at a Level 2 confidence level positively correlated with anti-inflammatory activity by inhibiting the release of PGE2. The ’Sample’ column indicates the Ocotea extract with 
the highest detector counts associated with each respective bioactive marker.  

ID Sample# Observed 
m/z 

RTa DCb VIPc FDRd (q- 
value) 

MFe Error 
(mDa) 

Adduct I- 
FIT 

Compound Class Proposed Annotation 
(Level 2) 

Observed product-ions (m/z) Source 

1 VI II 294.1484 3.03 7.2 ×
106 

15.45 8.410E-03 C19H19NO2 0.6 M + H 0.2 Aporphine alkaloids Dehydronuciferine 249.0907; 219.0806; 191.0837 Proposed 

2 VI II 296.1639 2.50 3.5 ×
104 

4.23 1.22E-02 C19H21NO2 0.4 M + H 0.4 Phenanthrene alkaloids Argentinine 251.1056; 236.0832; 219.0806; 
208.0856; 191.0837 

GNPS 

3 VI II 314.1381 1.69 2.8 ×
104 

10.54 9.36E-03 C18H20NO4 0.5 M + H 0.2 Aporphine alkaloids Laurelliptine 298.1082; 283.0838; 255;0879 GNPS 

4 VZ II 2 314.1744 2.18 2.5 ×
104 

4.70 4.84E-02 C19H23NO3 0.6 M + H 0.2 Benzylisoquinoline 
alkaloids 

Armepavine 298.1070; 271.1328; 269.1160; 
107.0495; 58.0675 

GNPS 

5 PC II 1 328.1539 1.94 3.4 ×
104 

10.81 1.29E-02 C19H23NO4 0.3 M + H 0.0 Aporphine alkaloids Boldine 297.1028; 265.0842; 237.0899; 
205.0641 

GNPS 

6 TL II 2 340.1538 2.51 1.2 ×
104 

1.71 9.63E-03 C20H21NO4 0.2 M + H 0.3 Aporphine alkaloids Dicentrine 309.1108; 279.1030; 264.0762; 
251.1056 

GNPS 

7 VI II 344.1850 1.96 1.6 ×
105 

1.03 2.08E-02 C20H25NO4 0.2 M + H 0.4 Benzylisoquinoline 
alkaloids 

Laudanine 298.1082; 206.0727; 189.0678; 
174.0905; 137.0596 

Proposed 

8 VA I 569.2235 2.90 2.6 ×
103 

1.35 4.99E-02 C34H34N2O4 1.6 2M+Cl 0.9 Aporphine alkaloids Caaverine 266.1098; 234.0754 Proposed  

a Retention Time,. 
b Detector counts,. 
c Variant Important in Projection,. 
d False Discovery Rate,. 
e Molecular formula. For those alkaloids of unknown available spectra, we have followed Qing et al., 2020 and Demarque et al., 2016 fragmentation mechanism elucidation to propose the fragment ions (metabolites 1, 7 

and 8). Spectra of all annotated biomarkers are attached to Supplementary data including MSE spectra of low and high-energy scans (Fig. S1-S8). 
Note:. 

# The table displays only the Ocotea sample in which the bioactive marker was found with the highest peak area. 
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Table 4 
The list of potential bioactive markers annotated at a *Level 3 confidence level positively correlated with anti-inflammatory activity by inhibiting the release of PGE2. 
The ’Sample’ column indicates the Ocotea extract with the highest detector counts associated with each respective bioactive marker. The unknown compounds also 
indicated by MSA are discriminated.  

Sample# Observed 
m/z 

RTa DCb VIPc FDRd (q- 
value) 

MFe Error 
(mDa) 

Adduct Hits 
(DNPf) 

Proposed 
Compound class 

Proposed annotation ( 
*Level 3) 

Isolated in 
Ocotea sp.? 

VI II 189.0688 3.04 4.4 
×

104 

*0.31 1.45E- 
02 

C10H8N2O2 2.4 M + H 15 Quinazolinones e.g. *8- 
Methylquinazoline-4- 
carboxylic acid 

No# 

VI II 297.1437 1.34 3.0 
×

104 

1.67 9.30E- 
03 

C15H24O3 0.2 M +
2Na 

298 Sesquiterpenoids * (rel)− 4β,5β,7β 
Eremophil-1(10)-en-2- 
oxo-12-oic acid 

Yes. O, 
insularis, O. 
holdrigeana 

TL II 2 279.2313 7.26 2.4 
×

105 

1.19 2.43E- 
02 

C18H30O2 0.8 M + H 70 Fatty acids – No 

VZ II 2 290.2684 5.00 4.5 
×

105 

1.99 2.01E- 
03 

C16H35NO3 0.7 M + H 1 Unknown Unknown No 

VI II 340.1498 1.58 2.3 
×

104 

1.43 4.73E- 
02 

C17H23O7 1.9 M + H 0 Unknown Unknown No 

VL II 386.3986 7.43 2.8 
×

104 

*0.41 6.425E- 
03 

C24H51NO2 0.8 M + H 15 Unknown Unknown No 

TL II 2 395.1551 2.31 1.2 
×

104 

1.52 4.62E- 
02 

C16H28O11 0.6 M-H 3 Sugar derivatives – No 

TR I 429.1399 2.46 3.2 
×

104 

2.27 4.991E- 
02 

C19H26O11 0.2 M-H 16 Iridoid glycosides – No 

VI II 903.2682 0.58 2.6 
×

104 

1.34 4.660E- 
02 

C56H42NO11 0.2 M-H 0 Unknown Unknown No 

Source: From the author. 
a Retention Time,. 
b Detector counts,. 
c Variable Important in Projection,. 
d False Discovery Rate,. 
e Molecular formula,. 
f Dictionary of Natural Products. 

Note: 
# The table displays only the sample in which the bioactive marker was found with the highest peak area. Other active samples also have these bioactive markers. 
* Metabolites that acquired VIP< 1, although were statistically different by volcano plot analysis. # Not a reliable hit, * Previously described in the literature in 

Ocotea genus: O. lancifolia (De Camargo et al., 2013). 

Fig. 6. LC–HRMS-ESI-DIA metabolic fingerprints of total ion chromatograms (TIC) in the positive mode showing the overlapped metabolic fingerprint of the 10 
most active Ocotea species, highlighting the presence of 8 alkaloids (1–dehydronuciferine, 2-argentinine, 3-laurelliptine, 4-armepavine, 5-boldine, 6-dicentrine, 7- 
laudanine and 8-caaverine). 
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to more than one bioactive marker, indicating that compounds could be 
acting synergistically to produce pronounced anti-inflammatory effects 
on the crude extract of these plants. Therefore, further studies are 
needed to explore the possible synergistic effects of these metabolites. 

Our study corroborates the Ocotea species for the search of anti- 
inflammatory bioactive compounds, and also to the understanding of 
the anti-inflammatory properties of Ocotea species. Statistical analysis 
identified 10 extracts, including O. pulchella, O. teleiandra, O. tenuiflora, 
O. spixiana, O. tabacifolia, O. tristis, O. vaccinioides, O. villosa, O. velutina, 
and O. velloziana, with high PGE2 inhibition release. These extracts hold 
significant potential as novel sources for developing plant-based anti- 
inflammatory treatments. With many inflammatory diseases still poorly 
managed, NP offers untapped resources for discovering new metabolites 
and biological activities with anti-inflammatory properties (Peng et al., 
2019; Yuliana et al., 2011). Our study underscores the importance of 
exploring natural chemical biodiversity to expand the repertoire of 
anti-inflammatory drugs. 

Regarding the metabolomics results, the R2 and Q2 values obtained 
suggest that the metabolomics model is robust and reliable enough for 
identifying anti-inflammatory bioactive markers. The additional per
mutation tests performed ensured the absence of overfitting. According 
to the MSA and univariate statistical results mainly aporphine and 
benzylisoquinoline isomers are the main correlated metabolites of 
Ocotea sp. with the PGE2 inhibition release. Thus, as a final point, under 
a holistic approach in terms of NP, our untargeted metabolomic reach to 
candidates of anti-inflammatory activity. The study was performed with 
a non-time-consuming isolation step, which is generally mandatory for 
classic phytochemical analyses (Wolfender et al., 2019; Yuliana et al., 
2011). In addition, this work is the first research regarding the chemical 
and biological activity of several endemic and endangered Ocotea 
species. 

Conclusions 

In this research, we have successfully addressed a critical gap in the 
existing literature concerning Ocotea genus chemical investigations by 
conducting a comprehensive metabolomics screening. We have laid the 
foundation for future phytochemical and biological explorations of 
Ocotea species with groundbreaking insights into the chemical content 
and bioactivity of several endemic Ocotea spp., previously unexplored. 
The bioactive markers revealed have the potential for inhibiting PGE2 
release, a critical inflammatory mediator in several inflammatory dis
eases. This discovery opens new avenues for research, as further in
vestigations into their molecular scaffolds could lead to the development 
of new potential therapeutic agents, and increase the current repertoire 
of anti-inflammatory treatments. This study contributes to the broader 
understanding of NP alkaloid chemistry within the context of Ocotea 
plant species. By highlighting the untapped potential of these endemic 
plants for anti-inflammatory bioprospecting, we also underscore the 
importance of biodiversity protection of such valuable natural 
resources. 
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Appendix A. Supplementary data 
 

Table S1. Vouchers from UFJF and UFOP and the Ocotea spp. details I. 

Number Code Popular name Specie Name 

Endemic (E) 

Non-endemic (N) 

Geographical location 

1 AY II canela-amarela Ocotea aciphylla (Nees & Mart.) Mez N 13°32′14.0″S 41°54′14.0″ W 

2 AU II canela-branca Ocotea acutifolia (Nees) Mez N 72°28′18.0″S 58°08′21.0″ W 

3 AM II unknown Ocotea amazonica (Meiss) Mez N - 

4 BI II canela-preta Ocotea bicolor Vattimo-Gil N - 

5 BA II louro-verdadeiro Ocotea brachybotrya (Meisn.) Mez E 19°35′28.0″S 42°34'′07.0″ W 

6 BR II unknown Ocotea bragai Coe-Teix. E - 

7 CL I unknown Ocotea calliscypha L.C.S.Assis & Mello-Silva E 20°17′15.0″S 43°30′19.1″ W 

8 CA I unknown Ocotea caesia Mez E - 

9 CT II canela-coqueiro Ocotea catharinensis Mez N - 

10 CE II moena negra Ocotea cernua (Nees) Mez N - 

11 CM II Unknown Ocotea complicata (Meisn.) Mez N - 

12 CO II canela-fedida Ocotea corymbosa (Meisn.)Mez N - 

13 CJ II Cuchumari Ocotea cujumary Mart. N - 

14 DO II canela-louro Ocotea diospyrifolia (Meisn.) Mez N - 

15 DI I canela-sassafrás Ocotea dispersa (Nees & Mart.) Mez E - 

16 DV II canela-segueira Ocotea divaricata (Nees) Mez E - 

17 EL II canela-broto Ocotea elegansMez/Ocotea indecora (Schott) Mez E - 

18 FE I Unknown Ocotea felix Coe-Teix. E - 

19 GL I louro Ocotea glauca (Nees & Mart.) Mez E 20°22′40.0″S 43°24′57.9″ W 



 

 

 

 

20 GU II unknown Ocotea glaucina (Meisn.) Mez E 16º35′'47.0″S 42º54′05.0″ W 

21 GZ II canela-amarela Ocotea glaziovii Mez E - 

22 GA II canela-seda Ocotea guianensis Aubl. N - 

23 HY I unknown Ocotea hypoglauca (Nees & Mart.) Mez E - 

24 IN II canela Ocotea indecora (Schott) Mez E - 

25 KU II canela-burra Ocotea kuhlmannii Vattimo-Gi/Ocotea nectandrifolia Mez E - 

26 LA II unknown Ocotea lanata (Nees & Mart.) Mez E 27°37′49.0″S 49°02′58.0″ W 

27 LN II canela-pilosa Ocotea lanceolata (Nees) Nees/Ocotea lancifolia (Schott) N 25°32′52.0″S 54°35′17.1″ W 

28 LC II canela-sabão Ocotea lancifolia (Schott) Mez N 18°06′54.0″S 43°20′28.0″ W 

29 LG I unknown Ocotea langsdorffii (Meisn.) Mez E - 

30 LX I canela-pimenta Ocotea laxa (Nees) Mez E 20°17′15.0″S 43°30′19.0″ W 

31 LO II unknown Ocotea lobbii (Meisn.) Rohwer E 22°05′21.1″S 43°49′40.0″ W 

32 LF II louro-ingá Ocotea longifólia Kunth N - 

33 MI II canela-vassoura Ocotea minarum (Nees & Mart.) Mez E - 

34 NT I unknown Ocotea nitidula (Nees et Mart. ex Ness) E - 

35 NE II canela-burra Ocotea nectandrifolia Mez E 26°54′36.0″S 50°13′13.0″ W 

36 NI II louro Ocotea nitida (Meisn.) Rohwer E 19°50′03.0″S 42°33′07.0″ W 

37 NO II louro-pipoca Ocotea notata (Nees & Mart.) Mez / Ocotea glaucina E 10°43′58.0″S 41°19′35.0″ W 

38 MU I canelinha Ocotea nummularia/Ocotea tristis E 19°52′47.9″S 43°40′10.9″ W 

39 NU I unknown Ocotea nutans (Nees) Mez E - 

40 OD II canela-sassafrás Ocotea odorifera Vell. Rohwer E - 

41 PA II unknown Ocotea paranaenses Brotto, Baitello, Cervi & E.P.Santos E 25°52′58.0″S 48°34′28.9″ W 

42 PE I Unknown Ocotea percoriacea Kosterm. E 20°17′15.0″S 43°30′19.0″ W 

43 PO I Canela Ocotea pomaderroides (Meisn.) Mez E - 



 

 

 

 

44 PR II imbuia Ocotea porosa (Nees & Mart.) Barroso N - 

45 PT II canela-sassafrás Ocotea pretiosa (Nees) Mez/Ocotea odorifera (Vell.) E - 

46 PU I canela-babosa Ocotea puberula (Rich.) Nees N 20°17′15.0″S 43°30′19.1″ W 

47 PL II unknown Ocotea pulchea Vattimo-Gil E - 

48 PC II 1 canela-lageana Ocotea pulchella (Nees & Mart.) Mez N 21°55′24.9″S 46°23′09.9″ W 

49 PH II Canela Ocotea pulchraVattimo-Gil E 27°21′38.0″S 49°08′13.0″ W 

50 SP I canela-baraúna Ocotea spectabilis (Meisn.) Mez E 20°22′40.0″S 43°24′57.9″ W 

51 SX I Canelão Ocotea spixiana (Nees) Mez E 20°17′15.0″S 43°30′19.1″ W 

52 TA I unknown Ocotea tabacifolia (Meisn.) Rohwer E - 

53 TL II 1 canela-limão Ocotea teleiandra (Meisn.) Mez E - 

54 TE II 1 unknown Ocotea tenuiflora (Nees) Mez E - 

55 TR I canelinha Ocotea tristis (Nees & Mart.) Mez E 20°17′15.0″S 43°30′29.1″ W 

56 VA I unknown Ocotea vaccinioides (Meisn.) Mez/Ocotea daphnifolia E - 

57 VR I canela-pilosa Ocotea variabilis Mart./Ocotea lancifolia (Schott) Mez N - 

58 VZ II 2 canela-verde Ocotea velloziana (Meisn.) Mez E - 

59 VL II canelão-amarelo Ocotea velutina (Nees) Rohwer E - 

60 VI II unknown Ocotea villosa Kosterm. E - 

        

* I- OUPR herbarium (UFOP- Federal University of Ouro Preto, Minas Gerais- MG) and II- CESJ herbarium (UFJF- Federal University of Juiz 

de Fora - Minas Gerais, MG), e.g., the sample “VL II” – Ocotea velutina – from CESJ. 

 

 

 

 

 



 

 

 

 

  Table S2. The Ocotea spp. extracts yields. 

Code Yield (%) Code Yield (%) Code Yield (%) 

AY II 20,0 GA II 8,5 PO I 16,0 

AU II 18,5 HY I 14,0 PR II 16,5 

AM II 10,5 IN II 10,0 PT II 10,5 

BA II 10,5 KU II 7,5 PU I 18,0 

BR II 16,0 LA II 9,5 PL II 9,5 

BI II 13,0 LN II 16,0 PC II 1 29,0 

CA I 27,0 LC II 9,0 PH II 10,5 

CL I 9,5 LG I 17,5 SP I 5,5 

CT II 13,5 LX I 23,5 SX I 14,0 

CJ II 12,5 LO II 10,0 TA I 21,5 

CE II 15,5 LF II 11,0 TE II 2 14,0 

CO II 15,0 MI II 7,0 TL II 2 8,0 

CM II 6,0 MU I 23,0 TR I 13,0 

DI I 14,5 NE II 8,0 VA I 13,5 

DO II 15,5 NI II 21,5 VR I 11,0 

DV II 13,5 NT I 7,5 VZ II 2 14,5 

EL II 19,0 NO II 20,5 VL II 9,0 

FE I 14,0 NU I 14,5 VI II 20,5 

GL I 11,0 OD II 9,5   

GU II 8,5 PA II 13,5   

GZ II 13,5 PE I 16,0   

 



 

 

 

 

Fig. S1. MSE spectra of low and high-energy channels for the proposed annotation of the dehydronuciferine (M+H).  

 



 

 

 

 

Fig. S2. MSE spectra of low and high-energy channels for the proposed annotation of the argentinine.  

 



 

 

 

 

Fig. S3. MSE spectra of low and high-energy channels for the proposed annotation of the laurelliptine (M+H).  

 



 

 

 

 

Fig. S4. MSE spectra of low and high-energy channels for the proposed annotation of the armepavine (M+H).  

 

 



 

 

 

 

Fig. S5. MSE spectra of low and high-energy channels for the proposed annotation of the boldine (M+H).  



 

 

 

 

 

Fig. S6. MSE spectra of low and high-energy channels for the proposed annotation of the dicentrine.  

 



 

 

 

 

 

Fig. S7. MSE spectra of low and high-energy channels for the proposed annotation of the laudanine (M+H).  



 

 

 

 



 

 

 

 

 

Fig. S8. MSE spectra of low and high-energy channels for the proposed annotation of the caaverine (M+H and 2M+Cl).  
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5  CHAPTER III – PART B: ANTI-INFLAMMATORY METABOLOMICS STUDY OF 

Ocotea SPECIES 

  

Chapter III containing the research article in a manuscript format is separately 

provided as an attached material of this thesis. 
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Anti-inflammatory markers of Ocotea (Lauraceae) uncovered 

through concatenated UPLC/MS-NMR metabolomics 

approach– dual inhibition of COX and LOX pathways 
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Daniela A. Chagas-Paulaa* 

 

The Lauraceae family, particularly the genus Ocotea, is recognized for its wide chemical 

diversity and medicinal properties, such as anti-inflammatory. Inflammation, driven by 

pathways such as cyclooxygenase (COX) and lipoxygenase (LOX), plays a central role in 

several human pathologies. These pathways are essential for the production of key pro-

inflammatory mediators, such as prostaglandin E2 (PGE2) and leukotriene B4 (LTB4). 

This study aimed to prospect dual COX/LOX inhibitory biomarkers in Ocotea species 

using a concatenated ultra-performance liquid chromatography coupled to high-resolution 

mass spectrometry (UPLC/MS) - nuclear magnetic resonance (NMR) metabolomics 

approach and machine learning (ML) prediction models. Sixteen Ocotea species were 

analysed, with PGE2 and LTB4 levels determined by using an ex-vivo anti-inflammatory 

assay. The metabolomic data were subjected to block scaling and concatenated, with 

UPLC/MS and ¹H-NMR data analyzed as distinct blocks. Both unsupervised and 

supervised multivariate statistical methods were performed. Additional statistical total 

correlation spectroscopy (STOCSY) was performed to identify and correlate chemical 

shifts in the NMR data. In addition, gas-phase fragmentation reactions were proposed to 

increase metabolite confidence annotation in the UPLC/MS data. ML models were 

integrated to predict novel promissory extracts based on the discriminant bioactive markers 

of the metabolomics data. Nine Ocotea species showed dual inhibition, annotating two 

aporphine and two benzylisoquinoline alkaloids, one sesquiterpenoid and one glycosylated 

flavonoid as key potential anti-inflammatory compounds. This metabolomics approach 

also reinforces the anti-inflammatory potential of Ocotea species as a source for the 

discovery of novel anti-inflammatory agents with innovative mechanisms of action through 

dual inhibition of COX and LOX pathways. 

 

Keywords: Natural Products, Biochemometrics, Chemical profiling, Spectroscopy and 

Spectrometric Techniques, Inflammation. 



Introduction   

The Lauraceae family has garnered significant attention for its chemical diversity, 

traditional medicinal value, and widespread biological activities.1–4 Particularly, the genus 

Ocotea, one of the largest in the family has demonstrated significantly anti-inflammatory 

activity.5–8 Previous studies have reported the anti-inflammatory effects of various Ocotea 

and also other species in the Lauraceae plants, attributing these effects mainly to the 

presence of alkaloids.7–9 Inflammation, a protective biological response to harmful stimuli, 

such as from infections, tissue damage, or the development of different diseases, involves 

complex biochemical cascades, including the activation of cyclooxygenase (COX) and 

lipoxygenase (LOX) pathways. They are critical in the biosynthesis of relevant pro-

inflammatory mediators such as prostaglandin E2 (PGE2) and leukotriene B4 (LTB4), 

respectively.10,11 The concurrent inhibition of these pathways is viewed as a valuable 

approach to drug discovery, given that most currently available drugs target them 

individually and inflammation is involved in a range of different pathological 

conditions.1,4,5 As drugs that demonstrate simultaneous activity in these pathways are 

scarce, discovering compounds with dual activity is highly desirable in to quest for novel 

effective anti-inflammatory therapies.11–13 

The field of natural products (NP) research, particularly in drug discovery, is 

undergoing a significant transformation with the increased implementation of modern 

metabolomics techniques.14–16 These methods offer an approach to exploring promising 

compounds early in the research process, reducing and rationalizing repetitive and labour-

intensive steps associated with traditional bioassay-guided fractionation.17,18 

Contemporary research strategies increasingly utilize comprehensive analysis of raw 

extracts which could also include preliminary fractions. This shift is allowing 

metabolomics research to streamline faster-targeted metabolite identification of potential 

bioactive markers.19,20 Such strategies can aid in prioritizing which extracts to explore for 

further fractionation, avoiding already known compound characterisation, and thus 

isolating new NPs or targeting those of interest more efficiently.21,22 

Central to these methodologies are advanced analytical techniques such as ultra-

performance liquid chromatography coupled to high-resolution mass spectrometry 

(UPLC/MS) and nuclear magnetic resonance (NMR) spectroscopy. These techniques are 

chosen for their sensitivity and selectivity, and their complementary capabilities are 

essential for the reliable annotation and potential identification of compounds. 

Concatenated metabolomics represents a sophisticated modern approach that integrates 

data from UPLC/MS and NMR to provide comprehensive metabolomic profiling.23–25 This 



approach pools the strengths of both methods to better characterise specialised metabolites 

from complex natural sources. This comprehensive coverage allows the detection of a 

broader range of metabolites, including those that might be missed by either technique 

alone. Additionally, results from each technique can validate and corroborate findings from 

the other, enhancing confidence in the bioactive markers annotation process.23,25,26 

 In addition to the advanced analytical techniques, the integration of computational 

tools and machine learning (ML) models into NP research is also contributing to a more 

effective way to prospect bioactive compounds.14,15 ML algorithms can process and aid in 

analysing complex datasets generated by metabolomics studies, enabling the identification 

of patterns and correlations that might be overlooked using traditional methods. These 

models are particularly valuable in predicting chemical and biological aspects, including 

patterns of co-occurring fragments and neutral losses acquired in tandem mass 

spectrometry (MS/MS) or even the bioactivity of compounds based on their metabolomics 

data, thus streamlining the identification of potential bioactive agents.8,15,27 

This study aimed to find dual biomarkers in Ocotea species responsible for 

inhibiting both COX and LOX pathways using a combined UPLC/MS-NMR metabolomics 

approach. Even though the literature supports the anti-inflammatory potential of Ocotea 

species, the dual inhibition of COX and LOX pathways by the selected Ocotea plant 

species has not been yet investigated. By integrating UPLC/MS and NMR techniques, this 

study sought to comprehensively profile the active compounds in Ocotea extracts and gain 

detailed insights into the metabolites responsible for anti-inflammatory properties, and 

their potential dual activity. An ex vivo anti-inflammatory assay was performed to assess 

the blood inhibition levels of PGE2 and LTB4 using UPLC-MS/MS. Later, ML was 

employed to validate the anti-inflammatory biomarkers of dual inhibition of COX and LOX 

pathways by building prediction models based on their discriminant metabolomics data. 

Results and discussion 

Anti-inflammatory activity. The results of ex-vivo anti-inflammatory activity 

for 16 Ocotea extracts were assessed by one-way ANOVA statistical analysis (Figure 1). 

To identify which groups differ, Dunnett’s multiple comparison test (Table S1-2) was 

applied post-ANOVA.28 Dunnett's post-test is indicated for statistical analysis of several 

groups against the control,29  as in the case of the an-inflammatory screening evaluation. 

The evaluated reference drugs, dexamethasone (DEX) and indomethacin (IND) exhibited 

substantial and comparable anti-inflammatory activity, especially for the PGE2 

experiment, both statistically different from negative (NEG) controls (p < 0.0001). 



Notably, the NEG controls showed high levels of PGE2 and LTB4, which are key pro-

inflammatory mediators targeted by current anti-inflammatory therapies,30–32 thus 

validating the efficacy of the anti-inflammatory screening protocol employed.  

The Ocotea crude extracts statistically different from the NEG controls were 

categorized as active samples (p < 0.05). The PGE2 and LTB4 inhibition release results 

demonstrated relevant insights into the dual anti-inflammatory potential of nine evaluated 

Ocotea extracts, specifically O. pulchella (PC), O. teleiandra (TE), O. tenuiflora (TL), O. 

spixiana (SX), O. tabacifolia (TA), O. tristis (TR), O. vaccinioides (VA), O. villosa (VI), 

and O. veloziana (VZ) (Table 1). However, similarly to previous screening of PGE2 

inhibition release O. villosa stands with the best results, for the present assay with 

approximately 72% of inhibition for PGE2.  It has inhibited by 68% the LTB4 release, 

similar to the DEX positive control (62% and 68% respectively), which is the reference 

drug well known to inhibit both COX and LOX pathways.12 Of notice, O. glaucina extract 

was inactive, besides pro-inflammatory, particularly for LTB4 levels. 

The Ocotea species investigated in this research have been previously evaluated 

only regarding their PGE2 inhibition activity, but not LTB4.9 Thus, the obtained results 

externally validated the previous one regarding their anti-inflammatory activity in the COX 

pathway. On the subject of the LOX pathway, previous works found that the leaf extract 

of O. diospyrifolia and O. odorifera and other Lauraceae species such as from the Aniba 

genus could inhibit myeloperoxidase (MPO) levels, an enzyme primarily found in 

neutrophils that indicates their recruitment to inflamed tissue. Given that LTB4 is a key 

mediator in neutrophil recruitment, it is also possible that Ocotea species might also inhibit 

the LOX pathway.1,5,6,33 The results presented here corroborate the literature and provide 

additional findings suggesting the anti-inflammatory activity of several Ocotea extracts can 

be via COX and LOX pathways, by dual inhibition of both PGE2 and LTB4 release, 

simultaneously. These findings further substantiate the therapeutic promise of Ocotea plant 

species in treating inflammation-driven conditions, potentially by a mechanism of action 

different from current anti-inflammatory drugs in the market, supporting the claims of anti-

inflammatory activity of plants from this genus.5–7,9  However, based on this ex vivo assay 

results, using human blood, is not possible to determine which portion of the COX and 

LOX inflammatory pathways are inhibited. To acquire such information, further 

investigation using specific enzymatic investigations would be necessary. 



 

Figure. 1. Ex-vivo anti-inflammatory activity of 16 Ocotea crude extracts and their inhibitory 

effects on PGE2 and LTB4 levels. The data is represented as the mean ± standard deviation (SD) 

of four replicates per sample and six replicates for the controls. Statistical analysis was conducted 

using one-way ANOVA followed by Dunnett's multiple comparison test. Asterisks (*) denote a 

statistically significant difference from the negative control (NEG), with p-values ≤ 0.05. Reference 

anti-inflammatory drugs are dexamethasone (DEX) and indomethacin (IND). 

 

Table 1. The percentage list of PGE2 and LTB4 releasing inhibition for the 16 evaluated Ocotea species.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Note: Relative release of PGE2 related to the NEG control = rrPGE2 = (PGE2 sample signal /NEG control 

signal). rrLTB4 = (LTB4 sample signal /NEG control signal). SD: standard deviation obtained by the 

propagation of error from sample signal uncertainty and NEG control signal uncertainty. 

PI: Percentage inhibition = (1 - rr) *100. 

Specie rrPGE2 (SD) PIPGE2 rrLTB4 (SD) PILTB4 

O. pulchella 0.526 (0.096) 47.4 % 0.465 (0.147) 53.5 % 

O. teleiandra 0.524 (0.107) 47.6 % 0.464 (0.138) 53.6 % 

O. tenuiflora 0.501 (0.178) 49.9 % 0.370 (0.157) 63.0 % 

O. spixiana 0.548 (0.095) 45.2 % 0.608 (0.162) 39.2 % 

O. tabacifolia 0.572 (0.141) 42.8 % 0.626 (0.152) 37.4 % 

O. tristis 0.308 (0.095) 69.2 % 0.312 (0.100) 68.8 % 

O. vaccinioides 0.489 (0.092) 51.1 % 0.451 (0.106) 54.9 % 

O. villosa 0.277 (0.105) 72.3 % 0.314 (0.095) 68.6 % 

O. velloziana 0.472 (0.145) 52.8 % 0.403 (0.094) 59.7 % 

O. bachybotria 0.803 (0.213) 19.7 % 0.860 (0.217) 14.0 % 

O. bragai 0.807 (0.131) 19.3 % 0.757 (0.376) 24.3 % 

O. glauca 0.797 (0.134) 20.3 % 0.778 (0.293) 22.2 % 

O. glaziovii 0.786 (0.192) 21.4 % 0.849 (0.242) 15.1 % 

O. lancifolia 0.876 (0.159) 12.4 % 0.854 (0.308) 14.6 % 

O. langsdorffi 0.788 (0.134) 21.2 % 0.926 (0.217) 7.4 % 

O. glaucina 0.862 (0.165) 13.8 % 1.257 (0.359) 0 % 

DEX (+ control) 0.368  (0.09) 63.1 % 0.316 (0.183) 68.4 % 

IND (+ control) 0.238 (0.104) 76.2 % - - 

NEG (- control) 0 0 % 0 0 % 



UPLC/MS and NMR Data Processing. After the exclusion of high-intensity 

features from the blank in both UPLC/MS and NMR datasets, for UPLC/MS data in the 

positive ionization mode, 1290 distinct features were detected (based on m/z and retention 

time - RT), while 1043 features were recorded in the negative mode. The m/z data contained 

features ranging from 150 to 1250 m/z and RT from 0.2 - 9.8 min from both ionization 

modes were processed separately before being combined to create a comprehensive data 

matrix of 2333 features of m/z – RT pairs (Table Z1- Available at 

https://doi.org/10.5281/zenodo.13826734). UPLC/MS data of the 16 Ocotea species in 

positive ionization mode exhibited a visually higher number of peaks between 1.5 to 3.5 

minutes. For the negative ionization mode, peaks were distributed throughout the entire 

chromatogram regions, especially from 1.5 - 5.5 min and 7.0 - 9.5 min (Supplementary 

Figure S1-2). For NMR data processing, 274 chemical shifts remained in the final data 

matrix after deleting blank signals (Table Z2- Available at 

https://doi.org/10.5281/zenodo.13826734). The NMR stacked spectral profile of the Ocotea 

extracts obtained exhibited signals in the regions of 0.6–1.4 ppm (methyl proton shifts), 

1.5–2.8 ppm (unusual methyl proton or methylene shifts), 3.0–4.0 ppm (methoxy proton 

shifts), 4.2–5.5 ppm (anomeric proton shifts), and 5.0–8.0 ppm (conjugated non-aromatic 

double bondS or aromatic proton shifts) (Supplementary Figure S3).  

Data fusion. The processed datasets of UPLC/MS (positive/negative modes = 

2285 features; 48 features bellow 150 m/z were excluded) and NMR data (274 features) 

were gathered together generating a final concatenated dataset of 2559 features (Table Z3-

Available at https://doi.org/10.5281/zenodo.13826734).  This disparity of almost ten times in 

the number of features highlighted the variable nature of detection across the different 

techniques. The UPLC/MS data generated an extensive higher number of features, as this 

technique has far more sensibility. NMR data besides fewer features, has higher 

reproducibility and thus these techniques provide complementary information under 

metabolomics studies.25,34,35 Thus, to handle this different number of variables in each 

block of the analytical data, a block-wise scaling tool using SIMCA-P was employed to 

manage this natural variability effectively. By considering the appropriate variance and 

standard deviation of each block, it ensured that no single block of data overshadowed the 

other. Also, treating each data block  (block 1 – UPLC/MS and block 2 – NMR) as a 

cohesive unit and scaling them appropriately, can lead to more balanced data adequate to 

proper multivariate statistical analysis (MSA).36,37 The use of block scaling is especially 



beneficial in metabolomics studies, where the diversity of metabolite concentrations and 

their biological relevance can greatly affect the interpretability of MSA models.25,38 

Multivariate Statistical Analysis. The NMR, UPLC/MS and fused datasets 

were separately investigated. For our metabolomics study, Principal Component Analysis 

(PCA) was the method of choice for an initial exploration of data structure due to its ability 

to facilitate the visualization of sample distributions across the dataset, and to evaluate the 

quality of the analytical acquired data, as well as for observation of potential outliers.39,40 

PCA is an unsupervised method that reduces original data to a few principal components 

to describe maximum variation within the data.21,39 Thus, PCA is a useful multivariate 

analysis that was employed to explore the complexity of the metabolic characteristics of 

Ocotea plant extracts, irrespective of their predefined classifications under the ex vivo anti-

inflammatory experiments.  

In our analysis, after applying a log transformation to minimize data skewness and 

Pareto scaling to make metabolite levels comparable, PCA was used to visualize general 

clustering trends within the datasets.41,42 For both UPLC/MS and NMR data, PCA achieved 

satisfactory goodness-of-fit and explained variances with R² values of 0.68 and 0.64, 

respectively, using 5 components. Higher R² values indicate a greater ability of the model 

to explain variance in the response data, thus it is a statistical measure that shows how well 

the data fit the regression model. Often for metabolomics studies R² values greater than 

0.5-0.6 are considered satisfactory.13,43,44 The UPLC/MS scatter plot analysis suggested a 

potential trending for the separation of active and inactive samples, while for NMR data, 

this trending pattern was less discriminative (Figure 2 A and B).  

For the fused dataset (Figure 2 C), PCA could effectively summarize the variation 

between groups with 5 components, with a well-explained variance and R² value of 0.63. 

The separation trend was also clear, with inactive samples clustering together in the upper 

right quadrant of Hotelling's ellipse (95%), and active samples being more widespread 

(Figure 2 C). Therefore, the fusion of datasets was beneficial because of enhanced 

clustering discrimination patterns. Still, by the analysis of the PCA score plots (Figure 2) 

it is evident that any data has achieved perfect clustering regarding the anti-inflammatory 

profile, demonstrating that other variables such as the potential inter-specie chemical 

composition variation are present also play a role. As shown in the loading plot (Figure 2), 

there are leveraged loading features across different active Ocotea extracts (left side) that 

might be able to contribute to the presence of dual anti-inflammatory effects. 



 

Figure 2. Score (left side) and loading (right side) plots of principal component analysis (PCA) of Ocotea 

crude extracts using PC1 vs. PC2. (A) NMR data, (B) UPLC/MS data and (C) UPLC/MS-NMR fused data. 

PC - O. pulchella, TE - O. teleiandra, TL - O. tenuiflora, SX - O. spixiana, TA - O. tabacifolia, TR - O. 

tristis, VA - O. vaccinioides, VI - O. villosa, VZ - O. veloziana, BA - O. bachybotria, BR - O. bragai, GL - 

O. glauca, GZ - O. glaziovii , LC - O. lancifolia, LG - O. langsdorffi, and GU - O. glaucina.  

Supervised analyses of Orthogonal Projections to Latent Structures - Discriminant 

Analysis (OPLS-DA) evaluated the impact of some features on the anti-inflammatory 

activity of the samples, using the UPLC/MS, NMR and concatenated datasets. The OPLS 

is an extension of the partial least squares regression (PLS) method which integrates an 

orthogonal signal correction filter to enhance model interpretability and accuracy, making 

it particularly useful in complex datasets to distinguish subtle differences between two 

groups.39,45 OPLS-DA is a robust statistical model that separates the predictive variability 



(the variability that helps differentiate between active and inactive) from the orthogonal 

variability, which is the variability that is present in the data but does not help distinguish 

the groups in the model construction. OPLS-DA separate variations that are orthogonal to 

the prediction, focusing on the variation that is directly related to the classification of the 

different classes or Y variables, generating models of easier interpretation.46 

The metrics of the concatenated model were similar to UPLC/MS and superior to 

the NMR individual’s metrics (Figure 3; Figure S4-5). For the fused dataset, after Pareto 

the scaling, the different blocks were supervised by their anti-inflammatory profiles. After 

GZ sample (inactive) exclusion (Table S4), an enhanced clustering of the inactive samples 

was observed. The OPLS-DA model, generated with 3 components, yielded an excellent 

fit, demonstrated by R² of 0.99, Q² of 0.87, with an R²Q² difference of only 0.12, indicating 

a robust classification and predictive capacity. Different from R2 which explains the 

variance, Q2, predicts the variance, providing information about model predictability. Thus, 

statistical models with a difference higher than 0.3 between R2 and Q2 are considered 

overfitted models.36,47 Thus, the developed OPLS-DA were well fitted and can be reliable 

for the investigation of bioactive markers in the samples and potentially useful for creating 

prediction models. 

To ensure the validity of the obtained results for the concatenated OPLS-DA model, 

the possibility of model overfitness was double-checked, and additional 100-permutation 

tests were conducted. Permuted UPLC/MS-NMR concatenated dataset (Q2 = - 0.08), and 

NMR dataset alone acquired negative intercepted values (Q2 = - 0.61), thus corroborating 

the reliability of the developed model (Figure 3; Figure S7). Permuted UPLC/MS dataset 

acquired Q2 values near zero (Figure S7). Permutation tests certify that the model is valid 

and its predictability was not compromised.  The models that are not overfitted show in the 

permutation test a lower Y-intercept of R2 compared to the non-permuted model and a Y-

intercept of Q2 less than 0.05 or negative.48 In addition, the cross-validated residuals (CV-

ANOVA) acquired a p-value of 0.036 and a Root Mean Squared Error (RMSE) of 0.2 for 

the first component and 0.1 for the second and third, respectively, thus providing additional 

satisfactory validation metrics for the model. The RMSE estimates the mean error expected 

for the predictions of the Y-variables, while the CV-ANOVA provides an estimation of the 

statistical significance of the model, indicating whether the observed separation between 

groups is likely due to genuine differences rather than random chance.49  

For data interpretation S-plot was investigated, as it provides a visual tool to 

interpret the results of OPLS-DA models, aiding in visualizing the relationship between 

the magnitude and the reliability of the features in distinguishing between active and 



inactive groups. The bottom left quadrant of the S-plot from OPLS-DA indicates the 

presence of discriminant features, including NMR chemical shifts (green) and m/z-RT pairs 

(blue) (Figure 3).  Features of chemical shifts (δ) 2.89, 3.05 and 4.89 ppm were clearly 

highlighted with high magnitude. Similarly, in the UPLC/MS data, such as the m/z 

314.1870 at RT 1.97 min and m/z 328.1538 at RT 1.96 min were visually evident as a 

discriminant of less magnitude in the model but of high reliability. Additionally, the 

loadings plots (Figure S6) have corroborated the S-plots observations. Loadings represent 

the weights or coefficients that indicate the contribution of each original variable to the 

latent components, demonstrating how strongly each variable is correlated and 

differentiating between the Y variable in the model, thus helping to identify the most 

important and distinguishing features.25,45,50  

 

Figure 3. OPLS-DA model of Ocotea crude extracts for metabolite discrimination supervised by the dual 

anti-inflammatory activity (R²: 0.99, Q²: 0.87). (A) 3D score scatter plot of UPLC/MS-NMR fused data 

divided into two clusters: active (green) and inactive (red). (B) S-plots of UPLC/MS-NMR fused data 

highlighting discriminant features. (C) Model validation by 100x permutations test (intercepts, lower R2: 0.79 

and negative Q2: -0.08). 

Moreover, biplots based on the OPLS model of the fused UPLC/MS-NMR model 

were performed to simultaneously examine the correlation between the chemical variables 

and the active and inactive Ocotea samples. From the NMR data, a notable shift was 

observed in active groups within the chemical shift regions of (δ) 2-3 and (δ) 3-4 ppm. 



Equally, in the UPLC/MS data, the m/z range of 250-550 was shifted in the direction of the 

active Ocotea species (Figure 4). Also, the OPLS model was used to define the key 

variables important for projection, identified by Variable Importance in Projection (VIP) 

scores (Figure 4). Variables with VIP scores > 1 are considered essential for separating 

samples based on their supervised activity.16,25 VIP scores higher than 1 and positively 

correlated with the active Ocotea species group were identified as important discriminant 

features, which could be responsible for the changes in the dual anti-inflammatory activity 

profile, particularly regarding the inhibition of PGE2 and LTB4 release. 

 

Figure 4. (A) OPLS-DA model biplots (loadings p and scores t) describing the simultaneous correlation 

between the chemical variables (1H NMR chemical shifts and m/z features) and the Ocotea extract samples. 

NMR data highlighting chemical shift regions of (δ) 2-3 and (δ) 3-4 ppm. UPLC/MS data showing the m/z 

range of 250-550. (B) Variable Importance in Projection (VIP) scores > 1 (in green to blue) and positive 

Correlation Coefficients (CorrCoef) discriminate features in the concatenated UPLC/MS-1H NMR dataset. 



Thus, the positive correlated discriminant features were ranked according to their 

significance to the model by the VIP score, leading to 311 features of VIP score from 1 to 

5.24 (26 chemical shifts and 285 m/z-RT pairs). Those not positively correlated with the 

dual activity were excluded leading to 216 features (16 chemical shifts and 200 m/z-RT 

pairs). Lastly, only those features with p-value < 0.05 were considered for the final list, 

leading to 50 features, 4 chemical shifts and 41 m/z-RT pairs, which all might be the main 

ones related to the compounds that are worthy of further consideration. The false discovery 

rate (FDR) was calculated by adjusting the p-values to Benjamin-hock q-values (Table 2; 

Table Z4-Available at https://doi.org/10.5281/zenodo.13826734) increasing the confidence of 

the discriminating features. In addition, satisfactory area under the curve (AUC) values > 

0.7 were also obtained for 4 NMR shifts and 15 from UPLC/MS m/z –RT pairs (Table 2; 

Table S3). These results corroborate the confidence in discriminating the most significant 

metabolites associated with the dual COX and LOX inhibition pathways.  

Metabolite Annotation. Adhering to the criteria set forth by the Metabolomics 

Standards Initiative (MSI), the annotation of the compounds correlated with anti-

inflammatory activity, by inhibiting the release of PGE2 and LTB4, was at levels level 2 

and 3 of confidence.51–53 This approach ensures a standard annotation of metabolites, 

enhancing the reliability and depth of our results. Initially, level 3 automated annotation 

with the OcoteaDB in-house database was achieved by matching the precursor’s (MS1) 

monoisotopic masses.9,54,55 This strategy gives directions to chemotaxonomy-related 

compounds, once the database is constituted of NP previously isolated from the genus, 

avoiding initial misleading annotations.54,56 

The annotated hits had their fragmentation spectra manually inspected using 

MZmine 3 for comparison with available spectral data in online databases. This process 

enabled the level 2 confidence annotations of four bioactive markers (Table 2). For the 

other two, laudanine and 4-oxo-lanceolic acid, no public mass spectral data was available, 

thus their fragmentation patterns were proposed based on possible gas-phase fragmentation 

reactions. Consequently, these compounds were assigned at level 2b of confidence, 

according to the classification system proposed by Schymanski et al. (2014).57 Other seven 

metabolites were annotated as level 3 according to the MSI confidence annotation 

guidelines related to hits from the Dictionary of Natural Products (DNP), which included 

caffeoyl-glycerol, sinapyl alcohol and stigmasterol glycoside derivatives (Table S3). In 

addition, intense unidentified features with VIP > 1.5 were subjected to molecular formula 

proposal using MZmine algorithms and following fundamental MS rules (e.g., nitrogen 

rule and isotopic pattern). This strategy resulted in, two metabolites annotated as level 4, 



they had zero hits in the DNP, offering insights into the future isolation of potential new 

bioactive compounds (Table S3).   

Table 2. The list of potential bioactive markers annotated at a Level 2 confidence level positively correlated 

with anti-inflammatory activity by inhibiting the release of PGE2 and LTB4.  

a Retention Time, b Variant Important in Projection, c False Discovery Rate, d Molecular formula. MS/MS database 

comparison: (a) – MoNA, (b) – GNPS. For compounds of unknown available spectra (c), annotation followed by 

Demarque et al., 2016 and Carnevale Neto et al., 2020 58,59, annotated also according to Schymanski et al. (2014). MSE 

of low and high-energy scans are shown in Figure S15-S20). Note: The highest abundance fragment ion is shown in 

parenthesis. Product-ions are highlighted in bold and had their fragmentation mechanism proposed.  

The OPLS-DA pointed ions at m/z between 250 and 550 correlated to the dual 

anti-inflammatory bioactivity profile (Figure 4). These features presented FDR (q-

values) lower than 0.05, representing the true positive annotation that distinguishes the 

potential discriminating metabolites associated with anti-inflammatory activity (Table 2). 

Gas-phase fragmentation reactions aided in uncovering distinct patterns for the annotated 

bioactive markers. Manual analysis of the high-energy positive mode MSE (fragment 

spectra) showed the ions at m/z 328 (RT 1.94 and 1.96 min) presented neutral losses 

related to aporphine alkaloids, while the ions at m/z 314 (RT 1.71 min) and 344 (RT 1.97 

min) present neutral losses commonly observed in benzylisoquinoline alkaloids (Figure 

5-6; Figure S8), The fragmentation pathways of these compounds can be highly 

influenced by the N-substitution pattern and the presence of adjacent methoxyl and 

Observed 

m/z 
RTa 

VIP
b 

FDRc 

(q-value) / 

AUC 

MFd 
Error 

(ppm) 
Adduct 

Proposed 

Annotation  

(Level 2) 

Observed product-

ions (m/z) 

314.1769 1.71 2.9 
4.37E-02 / 

0.53  
C19H23NO3 4.7 M+H Armepavine 

103.056; (107.049); 

115.054; 131.049; 

151.077; 165.069; 

176.063; 181.067; 

194.072; 237.090; 

268.099 (b) 

344.1870 1.97 2.8 
3.08E-02 / 

0.76 
C20H25NO4 3.8 M+H Laudanine  

137.059; 176.063; 

189.068; 298.119; 

313.127; 329.155 
(c) 

328.1538 1.96 2.4 
4.56E-02 / 

0.77 
C19H23NO4 0.7 M+H 

Laurotetanine or 

Norisocorydine 

178.077; 194.072; 

191.208; 205.064; 

222.066; 237.090; 

251.096; 265.084; 

281.069; 296.093; 

(311.118) (b) 

328.1539 1.94 2.7 
4.72E-02 / 

0.76 
C19H23NO4 0.7 M+H 

Isoboldine or 

Boldine 

151.054; 165.072; 

177.069; 197.072; 

205.064; 222.066; 

237.089; 265.084; 

282.0868; (297.099) 

(a) (b) 

449.1080 2.62 2.2 
4.51E-02 / 

0.68 
C21H22O11 -2.2 M-H Astilbin 

151.004; 152.010; 

180.004; 275.054; 

284.033; (285.038); 

297.098; 303.050; 

431.135; (449.1080) 

(a) 

247.1330 5.57 2.1 
1.39E-02 / 

0.70 
C15H20O3 -3.8 M-H 

4-oxo-lanceolic 

acid 

107.0482; 

165.0621; (203.142) 

219.142 (c) 



hydroxyl groups at the A and C aromatic rings,54,60,61  thus different fragmentation 

mechanistic pathways were proposed (Figure 5-6; Figure S8). The displayed m/z of the 

drawn fragments was calculated based on theoretical mass values (Figures 5-8). 

The fragmentation patterns and diagnostic ions observed for the protonated 

alkaloids at m/z 328 have been previously described in the Ocotea genus,9,62 and match 

aporphines, such as the isomers isoboldine and boldine, as well as noraporphines, such as 

laurotetanine and norisocorydine. Due to the complexity of the employed data-

independent acquisition (DIA) method and the non-targeted approach applied, it was not 

possible to precisely differentiate either of these pairs solely on matching MS/MS spectra, 

as they display several common fragment ions. The noraporphines, laurotetanine or 

norisocorydine, besides displaying the same precursor ion of the aporphines boldine and 

isoboldine at m/z 328, exhibit a different neutral loss of 17 Da (m/z 328  m/z 311; M+H-

17). This pathway is related to the simple inductive α-cleavage releasing ammonia -NH3 

instead of 31 Da (m/z 328  m/z 297; M+H-31) in the neutral loss of methylamine -

NH2CH3, which is common to aporphines (Figure 5). This change is attributed to the 

replacement of the methyl group by hydrogen in their N-substitution pattern, which 

allows the differentiation of these compounds by their fragmentation pattern.59 The 

mechanistic pathway can also be explained by the opening of the B ring (Figure S8). 

Further losses in (nor)aporphine rings of CH3OH (32 Da) were also observed (m/z 297  

m/z 265 and 311  279; M+H-32), followed by the loss of CO (28 Da) (m/z 265  m/z 

237 and 279  251; M+H-28) (Figure 5; Figure S8), which are expected neutral losses 

for these alkaloids.54,59,63 

 

 

 



 

Figure 5. Proposed fragmentation pathway of the noraporphine laurotetanine (left) and the aporphine 

isoboldine (right). Similar fragment ions and common neutral losses are highlighted (15 Da – CH3; 17 Da 

– NH3; 28 Da – CO; 31 Da- NH2CH3; 32 Da – CH3OH). 

For the annotated benzylisoquinoline armepavine besides matching important 

fragments to the reference spectra, the high-intensity diagnostic fragment ion at m/z 107 

suggested the presence of benzylisoquinolines mono-hydroxylated in their C ring 

corroborating the annotation of armepavine. This ion at m/z 107 is a diagnostic ion 

proposed to be produced by direct elimination of the C ring, resulting in the neutral loss 

of the isoquinoline ring (-207 Da; C12H17NO2). This pathway might be favoured due to 

the formation of a benzylic carbocation (C₆H₅CH₂⁺), a more stable fragment, where the 



positive charge can be stabilized by the equilibrium with the aromatic π system, and in 

this case, even extended due to the presence of the p-hydroxyl substituent (Figure 6). 

Following the same mechanistic pathway, for laudanine, the diagnostic fragment ion at 

m/z 137 indicates the presence of an additional methoxyl group in the C ring, which for 

laudanine is at position 5’ (Figure 6). Moreover, the observed 30 Da loss is likely due to 

a homolytic cleavage at the methoxyl groups (-OCH₃), between C-O bonds, leading to 

the loss of two methyl radicals (-CH₃, 15 Da each), and the subsequent formation of 

carbonyl groups (C=O). Also, other losses of 15 Da (-CH3) (m/z 313 → 298; m/z 283 → 

268 - Figure S8) were also observed for the benzylisoquinoline class. 

 

Figure 6. Proposed fragmentation pathway of the benzylisoquinolines armepavine and laudanine. Similar 

fragment ions and common neutral losses are shown (108 Da –C7H8O; 138 Da -C8H10O2; 207 Da -

C12H16NO2). 

Similarly, the high-energy negative mode MSE spectra of the ion at m/z 449, 

showed neutral losses commonly observed in the fragmentation of glycosylated 

flavonoids due to the observation of a neutral loss of the attached sugars.25,55 This allowed 

proposing a mechanistic pathway for deprotonated flavonoids. The observation of high 

abundance fragments at m/z 303 [M–H–146]− and at  m/z 285 [M–H–164]− suggested the 

loss of a deoxyhexose unit attached by an O-glycosidic link, and the presence of the 



taxifolin flavanonol (or 2,3-dihydroflavonol) aglycone. Deoxyhexose units (164.07 Da) 

are six-carbon tetra-substituted saccharides that compared with common hexoses, such as 

glucose, the deoxyhexoses do not present hydroxyl groups at C6 (deoxy), which is 

replaced by a hydrogen, forming a methyl group in C5 (Figure 7).  

Accordingly, the fragment ion at m/z 303 represents the intact taxifolin aglycone, 

which is the dihydro form of quercetin, thus retaining the hydroxyl at C3 after a 

heterolytic cleavage of the O-glycosidic bond. The observed fragment at m/z 285, 

suggests also the heterolytic mechanism but directed to the flavanonol ring instead of the 

sugar unit, with loss of the hydroxyl at C3 and formation of a double bond between C2 

and C3. While the observation of m/z 285 is typically associated with flavonol kaempferol 

aglycone64, the concomitant presence of m/z 303 suggests the taxifolin flavanonol 

aglycone65, once the loss of the sugar unit with the elimination of the hydroxyl group is 

not common in flavonols due to the presence of already a double bond between C2 and 

C3.55,64 In addition, the dehydration pathway is also likely to occur due to the observation 

of a less abundant neutral loss of 18 Da, potentially related to one water molecule 

elimination (m/z 449  m/z 431; [M-H-18]−). Besides, the fragment at m/z 303 matches 

the taxifolin deprotonated molecule in online MS/MS databases (Figure 7; Table 2).  

Figure 7. Proposed fragmentation pathway of astilbin (taxifolin 3-O-deoxyhexose). Three pathways are 

highlighted: loss of rhamnosyl (-146 and -164 Da neutral loss) at position 3 via glycosidic bond cleavage, 

and loss of water (18 Da neutral loss). 

Thus, these observed neutral losses and fragments helped identify the substitution 

pattern as an O-glycosylation of a deoxyhexose sugar in a taxifolin aglycone. The ion at 



m/z 449 and RT 2.62 min matched the 3'-O-hydroxy-glycosylated flavanonol astilbin 

(taxifolin 3-O-rhamnoside), from the OcoteaDB51. Thus, despite limitations regarding 

establishing the exact position of the deoxyhexose moiety and the specific deoxyhexose 

sugar, chemotaxonomy and MS data supported the annotation of astilbin (Figure 7). 

Moreover, the high-energy negative mode MSE spectra of the ion at m/z 247 

allowed the annotation of the sesquiterpenoid 4-oxo-lanceolic acid. It displayed an 

evident main neutral loss of 44 Da resulting from a potential decarboxylation reaction 

through α-cleaveage (m/z 247 → m/z 203; [M-H-44]−). Thus, that allowed proposing a 

mechanistic pathway for deprotonated compound, where the formed fragment at m/z 203 

can further undergo a γ-cleavage to form a stable O-methylphenolate anion (m/z 203 → 

m/z 107; [M-H-44-96]−). Another possible fragmentation pathway is a Retro Diels Alder 

(RDA) reaction originating a fragment ion at m/z 165 (m/z 247 → m/z 165; [M-H-82]−). 

In addition, the deprotonated molecular ion can undergo a CO loss to form a fragment ion 

at m/z 219 (m/z 247 → m/z 219; [M-H-28]−) as well as another γ-cleavage to also form 

the O-methylphenolate anion (m/z 247 → m/z 107; [M-H-140]−) (Figure 8; Table 2).  

Furthermore, this annotated sesquiterpenoid has been previously isolated in the 

leaves of O. minarum,66 along with other β-sesquiphellandrene sesquiterpenoid 

derivatives. Although, there are no available MS/MS spectra for direct data comparison, 

based on MSE analysis it matched expected precursor and fragment ions and has an 

associated Ocotea biosynthetic background, which further increases the confidence in this 

metabolite's annotation. 



 

 Figure 8. Proposed fragmentation reactions of 4-oxo-lanceolic acid. Decarboxylation reactions of α -

cleaveage lead to the loss of 44 Da (CO2) (m/z 247  m/z 203) followed by   to form an O-methylphenolate 

anion (m/z 203 → m/z 107; [M-H-44-96]−). Other alternative pathway include 3 mechanistic pathways: 

Retro Diels Alder (RDA) reaction originating a fragment ion at m/z 165 (m/z 247 → m/z 165; [M-H-82]−);  

CO loss to form a fragment ion at m/z 219 (m/z 247 → m/z 219; [M-H-28]−); γ-cleavage to also form a O-

methylphenolate anion (m/z 247 → m/z 107; [M-H-140]−). 

 

Regarding the NMR data, there are intense signals in the 1H NMR spectrum (2.0–

4.0 ppm ) that were observed as singlets or broad singlets. Based on existing chemical 

knowledge of the genus and the annotation results obtained from UPLC/MS, the signals 

observed are reasonable with the presence of benzylisoquinoline and aporphine-

substituted alkaloids, as well as glycosylated flavonoids.  

In the case of the alkaloids, the more unshielded ones (5.0–4.0 ppm) could be 

related to the presence of potential methoxyl groups in the A and C aromatic rings of 

these alkaloids, and the more shielded (2.0 – 3.0 ppm) potentially N-methyl or N-H groups 

in the B ring.36,67,68 However, these regions in the range of 3.00 – 5.0 ppm also align with 

the proton environments of glycosylated compounds, such as saccharides moieties 

(Figure 7; Figure S3).36,69 In addition, the presence of overlapping signals in this region 

is indicative of several protons from carbohydrates, such as hexoses, deoxyhexoses, 

pentoses and other potential saccharide moieties commonly found attached to flavonoid 

units.55,69,70 Due to the intensity of this multiplexed region, it was perceived that the 

concentration of the flavonoids in these crude Ocotea leaf extract samples might be higher 



than the alkaloid content (Figure S9). Moreover, the signals in the 1H NMR spectrum 

(6.00 - 8.00 ppm) are characteristic of the aromatic protons, which are present in both 

classes of alkaloids and flavonoids NP classes. Thus, the observation of these unshielded 

chemical shifts could be attributed to the aromatic protons of the aglycone portion of 

flavonoids (rings A and B), as well as to the aromatic rings of aporphines and 

benzylisoquinolines (rings A and C) (Figure S10).  

The loadings plot and S-plot from OPLS-DA, based on the UPLC/MS-NMR 

concatenated datasets (Figure 3 and Figure S6), highlighted chemical shift signals in the 

more shielded proton region (2.80–4.90 ppm) that show a higher correlation with the 

presence of anti-inflammatory bioactivity (Figure 4). The chemical shift signals at 2.89, 

3.05, 3.25, and 4.89 ppm, with false discovery rate (FDR) q-values below 0.05 represent 

true positive annotations and 1H NMR discriminant signals associated with dual anti-

inflammatory activity (Table 3). The less shielded signals at 4.89 and 3.25 ppm were 

associated with the presence of glycosylated flavonoids. The signal at 4.89 ppm is likely 

attributed to the methyne hydrogen of anomeric carbons (H-1'). Anomeric protons 

generally resonate between 4.0 and 5.5 ppm due to the deshielding effect of the oxygen 

of the glycosylic linkage attached to the anomeric carbon.69 Whereas, the signal at 3.25 

ppm could possibly come from the other sugar protons (adjacent carbinol groups), such 

as H-2', H-3', H-4', and H-5' protons. The more shielded methyne groups of the 

carbohydrates resonate between δH 3.0 and 5.0 ppm, varying with the specific sugar, 

glycosidic linkage, and substitution pattern on the flavonoid backbone.36,69 The signal at 

2.89 ppm could be indicative of the presence of protons from adjacent methylene groups 

or unusual methyl proton shifts due to the potential presence of close electronegative 

atoms.70 While the signal at 3.05 ppm likely corresponds to protons derived from 

methylene groups in the aliphatic portion of aporphine and benzylisoquinoline alkaloids 

(Table 3; Figure 5-6). Aliphatic methylene protons typically resonate between 2.5 - 3.5 

ppm, depending on the degree of substitution and proximity to heteroatoms or aromatic 

rings that can influence their shielding.70 

The signal at 4.89 ppm was assigned to a proton likely associated with the 

anomeric carbon of glycosylated flavonoids. The observed multiplicity (doublet) is likely 

derived from the coupling of H1' (the proton on the carbon in the glycosidic linkage) with 

H2', the adjacent carbinol in the saccharide moiety, resulting in a characteristic deshielded 

doublet, commonly observed in the NMR spectra of glycosylated flavonoids. This 

assignment is supported by the consistent appearance of this doublet in the 1H NMR 

spectra of the active Ocotea species (Figure 9A), corroborating the presence of the 



annotated taxifolin-3-O-rhamnoside (astilbin) or even other similar glycosylated 

flavonoids. The anomeric configurations of the sugar units were inferred from their 

measured 3JH-1/ H-2 coupling constants. Since this doublet resonates at 4.9 ppm with a 

coupling constant of 3.55 Hz, it is inferred that the sugar moiety is likely in the α-

configuration (J < 5.0 Hz).36,69 The highest peak areas of this signal were observed mostly 

in the spectral data of the active samples, particularly O. teleiandra and O. tabacifolia 

(Table Z3, Figure 9A). Interestingly, reports of isolated astilbin in the literature also 

indicate the α-configuration, such as in O. canaliculata and O. elegans, further supporting 

this assignment through chemosystematic and phytochemical studies.71,72 

Table 3. The list of NMR discriminant features from the MS-NMR fused data that contribute to the 

differentiation of the dual anti-inflammatory activity model of Ocotea crude sample extracts.  

a Chemical shift (δH –ppm) range in the 1D projection spectra, b Multiplicity and coupling constant in hertz (Hz). b – 

broad signal of compromised multiplicity visualization. c Statistical Total Correlation Spectroscopy – corr – correlation 

value, c Variant Important in Projection, d Area Under the Curve. e False Discovery Rate. NA – not annotated. # Note: 

Only the most significant correlations with the driver signal of STOCSY were reported (> 0.85). 

 

Statistical Total Correlation Spectroscopy (STOCSY) was utilized to explore the 

variance and the potential metabolite correlations within the 1H NMR dataset to further 

assist in enhancing the confidence in the bioactive marker annotations.23,73,74. STOCSY 

employs covariance (combined variability among different variables) and correlation 

calculations between peaks to identify features from the same molecular structure or 

similar pathways. The usage of STOCSY calculations has increased in metabolomics 

studies in the last ten years, in order to facilitate the biomarker identification stage.23,73–75 

Thus, the STOCSY analysis method was applied and has successfully aided in identifying 
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significant correlations among the chemical shifts across the 1H NMR spectra. This 

method starts by selecting a “driver peak” and then measures its covariance and 

correlation with all intensity peaks across samples, assuming that multicollinearity 

indicates a similar molecular origin.23,75  

STOCSY successfully aided in identifying the multicollinearity of chemical shift 

intensities across the analysed active dataset. By using the discriminant signals (FDR < 

0.05) as the signal drivers (Table 3), most of the correlated signals were found to 

correspond to the chemical shifts in the aromatic (Ar-H), anomeric (CH-OH), and 

carbohydrate proton regions, which are characteristic of glycosylated flavonoids (Figure 

9B). The most deshielded aromatic signals in the range of 7-8 ppm, typically observed as 

doublets with J < 5 Hz, are often associated with B-ring protons of a flavonoid aglycone 

with meta-coupling, such as at positions 2’ and 6’. In contrast, higher coupling constants 

( J > 7 are observed for ortho-coupling at positions 5' and 6' of the B-ring.69,70 

Interestingly, STOCSY revealed a high correlation between the driver signal at 4.89 ppm 

and the aromatic signal at 7.29 ppm, suggesting that these discriminant signals could 

indeed correspond to glycosylated flavonoid derivatives (Table 3, Figure 9B). The 

aromatic signal at 7.29 ppm appeared as an unresolved doublet or broad singlet (Figure 

S11). This may be due to the lower intensity of the signal, as well as the natural farther 

coupling distance of meta protons, potentially leading to the observed unresolved 

coupling. Nonetheless, a coupling constant (J ≈ 2.6 Hz), could be measured, supporting 

the correlation with a potential proton at a meta position on the aromatic ring. Also, high 

correlations at 5.26 (bs) and 4.26 (bd, J=7.55 Hz) ppm were also observed. The 

unshielded signal at 5.26 ppm likely arises from methyne groups directly attached to 

oxygen atoms, at positions 2 or 3 of the C-ring in taxifolin-derived glycosylated flavonoid 

cores (Figure 8B), as the oxygens pull electron density and typically deshields these 

protons. The presence of these high correlations further supports the designation of the 

signal at δH 4.89 as an alkyl methyne group of anomeric carbon of flavonoids. 

Furthermore, the methylene proton region at δH 3.05 (m) ppm could be indicative 

of aliphatic methylene groups in the B-ring of either aporphines or benzylisoquinolines. 

STOCSY also showed strong correlations in the same multiplet region at δH 3.09, as well 

as in the aromatic region at 6.85 ppm (Figure S12).  

The signal in the shielded region may be attributed to methylene groups within 

the core structure, such as the adjacent methylene groups of the aporphine (positions H4 

and H5) and benzylisoquinoline B-ring (positions H3 and H4) or the methylene groups 

connecting the isoquinoline B-ring to the benzyl C-ring in benzylisoquinolines and 



related alkaloids, which also could include aporphines unsubstituted at the D-ring 

(position H7) (Figure S12). These correlated chemical shifts by STOCSY corroborate 

that these discriminant chemical shifts could indeed be derived from aliphatic methylene 

groups likely originating from the presence of benzylisoquinolines and aporphine 

alkaloids. Additionally, still relevant correlations (>0.65) were observed for potential 

methoxy group signals at δH 3.65, δH 3.73, and δH 3.77, which is a well-known 

characteristic chemical shift range of aromatic methoxyl groups in these alkaloid 

classes.5,67,68,76 (Figure S12). 

 

Figure 9. (A)- Hydrogen of anomeric carbon that appears predominantly in the 1H NMR spectra of the 

active Ocotea species. (B)- STOCSY correlation with driver signal at 4.89 ppm. The gradient color of the 

STOCSY scatter plot represents the degree of correlation, with warmer colors (yellow/red) indicating a 

stronger positive correlation, and cooler colors (blue/purple) indicating negative or weak correlations. 

 



 In this context, OPLS-DA and STOCSY aided in exploring the variance and 

finding the most pronounced correlations among the several signals throughout the NMR 

spectral dataset, enhancing the ability to discern and interpret complex metabolic 

interactions. STOCSY aided in identifying signals from the same feature based on the 

variance in its detected levels within the different analysed spectra. Of notice, it is 

important to mention that two or more metabolites involved in the same biosynthetic 

pathway can also present significant intermolecular correlations in STOCSY because of 

natural biological covariance.23 However, even though signals may come not from the 

same molecule, these signals covariate and this type of information could be relevant and 

sometimes detrimental for robust bioactive markers investigation and analysis, as they 

can corroborate the existence of similar chemical structures that can also discriminate 

active from inactive samples.23,75 

Furthermore, as previously mentioned, aporphines and benzylisoquinoline 

alkaloids are a class of NP known for their significant biological activities, including anti-

inflammatory.6,7,9 These alkaloids are primarily found in various plant species, where they 

have been traditionally used for their therapeutic properties.6,77 Previous studies in the 

literature have demonstrated that aporphines and benzylisoquinoline alkaloids can 

modulate inflammatory responses by inhibiting key enzymes and signaling pathways 

involved in multiple inflammation targets, including the COX and LOX 

enzymes.6,8,9,63,78,79 The ability of aporphines and benzylisoquinoline alkaloids to target 

important inflammatory pathways makes them promising candidates for developing new 

anti-inflammatory drugs. The results from multivariate analysis indicated the aporphines 

boldine/isoboldine, the noraporphines laurotetanine / norisocorydine as significant 

discriminant metabolites as well as the benzylisoquinolines armapevine and laudanine. 

Regarding the glycosylated flavonoids, this class of metabolites is increasingly 

recognized for their extensive profile of antioxidant and anti-inflammatory properties. 

These naturally occurring substances are found in a wide range of fruits, vegetables, and 

medicinal plants.80–82 Particularly, astilbin is commonly found in various plants, such as 

those belonging to the Astilbe species, with associated popular use in traditional Chinese 

medicine, although also known to be produced by Lauraceae plants, and has been already 

isolated in the Ocotea genus.71,72,83 Astilbin was reported in the literature to promote in 

vivo immunomodulation and inhibit inflammatory pathways by reduction in the 

production of pro-inflammatory cytokines and mediators, such as PGE2, TNF-α, IL-1β, 

IL-10 and nitric oxide. It was proposed that the anti-inflammatory effect was also due to 

the inhibition of the NF-κB pathway.84 Thus, the literature suggests that astilbin could be 



an effective NP anti-inflammatory agent, corroborating the findings of this metabolomics 

investigation. Herein, it is demonstrated the potential of astilibin as a bioactive anti-

inflammatory marker in the dual COX and LOX pathways, which are important enzymes 

for the release of several pro-inflammatory mediators, such as PGE2 and LTB4. 

Furthermore, β-sesquiphellandrene is a sesquiterpene found in several essential 

oils, such as those from ginger, turmeric, and citrus species and also found in Ocotea plant 

species.66,85–87 It is known for its aromatic properties and biological activities, including 

anti-inflammatory and antioxidant effects. Studies suggest that essential oils88 and plant 

extracts89 containing β-sesquiphellandrene can modulate important inflammatory 

signaling pathways, such as NF-κB, and inhibit the production of pro-inflammatory 

mediators prostaglandins (such as PGE2), and cytokines (such as IL-1β, and IL-6), which 

are typically elevated in inflammatory conditions and play key roles in the inflammatory 

response.88–90 Due to similar chemical structures, the 4-oxo-lanceolic acid is a potential 

derivative of β-sesquiphellandrene, featuring additional carboxylic acid and ketone 

groups, thus, is likely to retain or even enhance the anti-inflammatory properties. As this 

metabolite was associated as a potential marker in this metabolomics study, it is expected 

that the 4-oxo-lanceolic acid could improve its interaction with enzymes or receptors 

involved in inflammatory pathways, possibly through additional hydrogen bonding 

within active sites of enzymes due to the presence of the carbonyl and carboxyl groups. 

However, there is no research on the anti-inflammatory effects of 4-oxo-lanceolic acid 

specifically, so its potential anti-inflammatory effects need to be confirmed through 

further experimental studies. Although the anti-inflammatory potential of β-

sesquiphellandrene is supported by the literature, and together with the previous isolation 

of the 4-oxo-lanceolic acid in the genus, these shreds of evidence support the annotation 

of this sesquiterpenoid as a discriminant bioactive metabolite, which herein demonstrated 

the potential to be active in both dual COX and LOX inflammatory pathways. 

Prediction Models. Our study employed two ML methods, LogisticBase 

(Logistic regression) and Artificial Neural Networks (ANN) to examine and forecast the 

dual anti-inflammatory activity of Ocotea extracts based on their annotated significant 

discriminant features of the concatenated UPLC/MS-NMR dataset. These models 

revealed high accuracy in the external test sets (Table 4). This indicates a satisfactory 

performance with an equitable balance of internal accuracy and external evaluation, 

which helps to avoid building overfitted models. However, the internal validation (CV-

10 folds) for the simple logistic regression assumed only a modest performance of 67%. 

Regarding the more sophisticated ANN method, satisfactory internal validation of 77% 



was achieved. Metrics such as sensitivity and specificity that accurately detect true 

positives (active samples) and true negatives (inactive samples) were satisfactory for the 

models. Other additional validation metrics were also assessed and showed high 

robustness, especially for ANN (Table 4). Still even applying simple regression models, 

such as LogisticBase, the discriminant features of the OPLS-DA analysis seem to elicit 

satisfactory predictions. Even though the dataset is relatively small, it successfully 

predicts new active samples with adequate performance using simple logistic regression 

and a more sophisticated ANN algorithm.  

Table 4. ML algorithms and performance metrics for the discriminant features of the 

concatenated dataset. Describes accuracy, Cohen’s kappa, sensitivity, specificity, precision, recall 

and F-measure. 
ML 

algorithms 

 Accuracy 

(%) 

Cohen's 

Kappa 

Sensitive Specificity Precision Recall F-

measure 

LogisticBase 

 

Training 100 1 1 1 1 1 1 

External 

Validation 

80 0.6 0.7 1 1 0.7 0.8 

Internal 

Validation 

67 0.3 0.6 0.7 0.8 0.6 0.7 

ANN 

 

Training 100 1 1 1 1 1 1 

External 

Validation 

100 1 0.9 1 1 0.9 1 

Internal 

Validation 

77 0.5 0.8 0.7 0.9 0.8 0.8 

 

Furthermore, additional scrambling tests were also performed to ensure data 

reliability, and when comparing the validation metrics of the real models with the 

scrambled data, a significant decrease in model performance was observed. Notably, the 

ANN model experienced a considerable decrease in external validation performance 

when using the scrambled dataset, with accuracy falling from 100% to 50% and Cohen’s 

Kappa from 1 to -0.3, LogisticBase following the same negative Cohen’s Kappa pattern 

for external validation (Table S6). These discrepancies highlight that scrambled data 

leads to highly inferior and unreliable model performance compared to real data. Thus, 

the prediction models demonstrated overall high satisfactory validation metrics, 

especially for the ANN model (Table 4). Additionally, even applying simple regression 

models, like LogisticBase, the discriminant features of the OPLS-DA analysis seem to 

elicit adequate predictions. Thus, based on the quality of the built models without the use 

of additional hyperparameter tuning or boosting algorithms, demonstrates that this 

approach offers hopeful directions for computational drug discovery strategies based on 

discriminant features of untargeted metabolomics data. 



In summary, the application of standard values in developing anti-inflammatory 

prediction models has yielded highly satisfactory metrics, demonstrating that validated 

results from multivariate analysis can be ground-breaking for identifying biomarkers in 

crude plant extracts, particularly in the context of modern metabolomics studies. This 

strategy of MSA and ML association reinforces the presence of discriminant metabolites 

in the evaluated Ocotea extracts, which the anti-inflammatory profile could be explained 

by differences in their chemical profile. It also demonstrates the reliability of 

bioinformatics strategies to predict new active Ocotea crude extract samples using 

computational methods, thus supporting the development of faster natural anti-

inflammatory agents using modern metabolomics and ML strategies. 

Final Remarks. Sixteen species from the Ocotea genus were investigated, and 

nine of them demonstrated the ability to inhibit both the COX and LOX pathways, 

suggesting the presence of bioactive markers as potential dual-action anti-inflammatory 

agents. The obtained results reproduced literature regarding the inhibition of PGE2 

production for some of the previously evaluated Ocotea species and provided novel 

findings concerning the inhibition of LTB4 release to all of them. This work presents 

highly promising results for the advancement of novel anti-inflammatory agents with 

mechanisms of action different from drugs in the market and also fulfils a gap in the 

literature for effectively screening plant species for dual anti-inflammatory activity 

investigation in the same experiment using a small volume of blood for evaluation. 

OPLS-DA successfully aided in identifying key discriminant metabolites, while 

STOCSY correlation analysis complemented the OPLS-DA findings by indicating 

correlated NMR chemical shifts for these metabolites. Four alkaloids, one glycosylated 

flavonoid and one sesquiterpenoid were revealed to be significant potential bioactive 

markers of the dual COX and LOX inhibition pathways. In addition, the anti-

inflammatory effects of β-sesquiphellandrene provide a solid rationale for considering the 

potential anti-inflammatory properties of its derivatives, such as the 4-oxo-lanceolic acid. 

Further experimental validation through in vitro, ex vivo and in vivo studies would be 

necessary to confirm this first evidence. Of notice, only UPLC/MS data pointed out the 

oxo-lanceolic acid as a bioactive marker, likely due to their concentration in the Ocotea 

extracts, as UPLC/MS analysis suggested being a minor compound. Nonetheless, only 

MS due to its higher sensibility was able to detect this metabolite, demonstrating the 

importance of using both NMR and UPLC/MS techniques, if available, for enhanced 

metabolomics coverage and confidence in bioactive markers annotation. 



 The prediction models generated from discriminant metabolomics data using 

OPLS-DA demonstrated high accuracy, sensitivity, and precision, indicating robust 

performance across the two different models. The accuracy and performance of the ANN 

model (100% accuracy on the external set) were highly satisfactory, considering only the 

standard parameters. These approaches offer a strategic method for identifying bioactive 

compounds and compound classes in NP extracts, such as the evaluated Ocotea extracts, 

and reliably predicting the activity of novel crude extract samples. In the context of this 

research, with potential dual-anti-inflammatory action and applicability domain to the 

Ocotea species. This strategy would allow researchers to prioritize extracts that have been 

predicted as potentially active before conducting extensive experimental plant bioactivity 

assays. Thus, this approach enhances the efficiency of bioprospecting NP under 

untargeted metabolomics studies. 

However, despite the advantages of concatenated UPLC/MS-NMR 

metabolomics, it faces challenges, such as the complexity of data integration and ensuring 

that sample preparation is suitable for both techniques. Combining and interpreting data 

from two different techniques also required sophisticated computational tools. However, 

the benefits of this approach include enhanced metabolite coverage, improved accuracy 

through cross-verification between UPLC/MS and NMR data, and therefore increased 

confidence in the biological interpretations and findings. Overall, concatenated 

metabolomics is a powerful approach for comprehensive and accurate metabolomic 

analysis25,37,38, leveraging the strengths of both analytical platforms of UPL/MS and NMR 

to provide detailed insights into the chemistry of specialised metabolites in NP research.  

The combined use of ex-vivo anti-inflammatory assays, concatenation 

metabolomics techniques, and chemometric strategies, complemented with gas-phase 

fragmentation reactions proposals and spectroscopic correlation analysis, facilitated the 

confidence level 2 of metabolite annotation of the key alkaloids, a glycosylated flavonoid 

and a sesquiterpenoid derivative, as potential dual anti-inflammatory discriminant 

markers in the crude extract of the investigated Ocotea species. This research underscores 

the efficacy of Ocotea species as a source of natural anti-inflammatory compounds with 

the potential to inhibit both COX and LOX pathways, thus contributing to the growing 

body of evidence supporting the medicinal value of the Ocotea genus. The application of 

concatenated UPLC/MS-NMR and robust multivariate statistical methods provides an 

effective approach for biomarker investigation in modern drug discovery. It showcases 

the successful combinations in NP research of advanced analytical techniques with 



computational methods and bioinformatics tools as powerful strategies for biomarker 

discovery and prediction model constructions based on metabolomics data. 

 Experimental Section 

Drugs and Reagents. Dexamethasone, indomethacin, limaprost, PGE2 authentic standard, and 

LTB4 authentic standard, E. coli O26:B6 lipopolysaccharides (LPS) and calcium ionophore (CI) were 

acquired from Sigma Aldrich® (St Louis, MO, USA). The deuterated dimethylsulfoxide (DMSO-d6) was 

sourced from Sigma-Aldrich (Dorset, SWE, UK). All solvents, including hexane, methanol, ethanol, 

acetonitrile and formic acid, were of high-performance liquid chromatography (HPLC) grade and also 

supplied by Sigma Aldrich® (St Louis, MO, USA). Ultrapure water was produced using a Millipore Milli-

Q® water purification system (Bedford, MA, USA). Liquid nitrogen was sourced from Lindet® (Pullach, 

MU, DE).  

Plant Materials. To address the ecological concerns regarding threatened Ocotea species in 

Brazil,91–93 we collected 1-3 leaves from 16 different voucher specimens. These specimens have been 

previously deposited in the herbariums of the Federal University of Ouro Preto (OUPR, UFOP) and the 

Federal University of Juiz de Fora (Leopoldo Krieger - Centro de Ensino Superior de Juiz de Fora, CESJ, 

UFJF). Each Ocotea sample was assigned an identification code (ID) detailed along with the geographical 

location of the plant collection, together with the respective deposit voucher numbers (Table S6). This 

research was registered with the National System for Governance of Genetic Heritage and Associated 

Traditional Knowledge (SisGen) under the code #A5A8F67. 

Metabolite Extraction and Sample Preparation. Each of the 16 Ocotea samples was 

weighed (50 mg) and crushed using a pestle and liquid nitrogen until pulverized. To extract the most polar 

and semi-polar compounds, 1.7 mL of ethanol:water (7:3, v/v) was added to the powdered material. The 

samples were placed in a warm ultrasound bath at 35 °C for 15 minutes (170 W, 50 kHz, L100 Schuster) 

and then centrifuged at 22 °C and 90 rcf (G-force). To remove fatty substances, the supernatants were 

partitioned with hexane (2 x 300 µL). The extracted samples were then filtered through 

polytetrafluoroethylene (PTFE, Millex®) filters (22 μm) and dried using a Speed Vacuum Eppendorf at 40 

°C for 4 hours. The samples were stored in a freezer at -20 °C until analysis.9 The dried extracts were 

weighed, and the yield was calculated (Table S7). For the NMR analyses, each dried extract was prepared 

by dissolving it in 650 µL of DMSO-d6 to achieve a concentration of 5 mg/mL. The solutions were then 

transferred into 5 mm 7” NMR tubes, ensuring they were ready for analysis. In parallel, for the UPLC-MS 

analysis, the same extracts were prepared by suspending them in methanol to achieve a concentration of 

1.0 mg/mL. This mixture was then filtered through a PTFE filter with a pore size of 0.22 µm to prevent any 

particulate contamination during the LC-MS analysis process. 

Ex-vivo Anti-inflammatory Assays. Experiments were conducted using human whole blood 

from volunteers (Research Ethics Committee of the Federal University of Alfenas 60344622.1.0000.5142). 

The detailed anti-inflammatory assay protocol is available in our latest publications1,9,94,95. However, for 

this time the LTB4 release quantitative assessment was also included together with additional sample 

preparation improvements. Basically, pure substances such as dexamethasone (DEX) and indomethacin 



(IND) were tested at 1 µg/mL as positive controls. The Ocotea extracts were assayed at 10 µg/mL. 

Phosphate-buffered saline 1x (PBS 1x, pH 7.2; 0.15 mol/L chloride; 0.01 mol/L phosphate) was used for 

dilution of the inducer solutions, including lipopolysaccharides (LPS) at 10 µg/mL and calcium ionophore 

(CI) at 20 µmol/L, to activate both PGE2 and LTB4 mediators release, respectively. PBS 1x solution was 

also used as a negative (NEG) control to estimate the average maximum amount of PGE2 and LTB4 

produced during the inflammatory process. The plating sequence was as follows: 35 µL of each Ocotea 

extract, 280 µL of blood in all wells, and 35 µL of LPS + CI solution. The samples in sterile 96-well plates 

were incubated for 24 hours in a 5% CO2 atmosphere at 37 °C. After incubation, samples were manipulated 

out of the light exposure. The plates were centrifuged for 5 minutes at 1207 rcf and 4 °C. Subsequently, 

180 µL of plasma was removed from each well and frozen for later lyophilization. The lyophilized plasma 

was spiked with 280 µL of a precipitating solution (ACN:MeOH 1:1 v/v) containing 30 ng/mL limaprost 

as internal standard (IS). Samples were then centrifuged (8400 rcf, 4 ºC) for 10 minutes. The supernatant 

(200 µL) was transferred to a polypropylene tube containing 1.8 mL of ultrapure water. The samples were 

then loaded into a Supelco® Solid-Phase Extraction cartridge (Supelclean® LC-18 100 mg, 1 mL tubes, 

#504270) after conditioning with 2 mL of MeOH followed by 2 mL of acidified ultrapure water (0.1% 

HAc). The cartridges were washed with 1 mL of ultrapure water (0.1% HAc), and the PGE2 and LTB4 

analytes were eluted into polypropylene tubes using 1 mL of MeOH (0.1% HAc) and then evaporated to 

dryness. Samples were then resuspended with 50 µL of ACN before injection into the UPLC-MS/MS 

instrument system. 

PGE2 and LTB4 Determination by UPLC-MS/MS. The UPLC-MS/MS analyses were 

performed using a Shimadzu® (Kyoto, Japan) UPLC-MS/MS system with a triple-quadrupole mass 

analyzer operating in negative mode. Multiple Reaction Monitoring (MRM) experiments were performed 

for each analyte (PGE2, LTB4 and Limaprost – internal standard), according to their specific m/z transitions 

(Table S6). The samples and controls were injected (30 µL) into a chromatographic system with a Poroshell 

120 EC-C18 (2.7 μm, 4.6 x 150 mm) column maintained at 30 ºC. The mobile phase consisted of (A) 

ultrapure water acidified with 0.1% formic acid and (B) acetonitrile (100%) at a constant flow rate of 300 

µL/min. Gradient elution was established as follows: 40% B until 100% B (0-5 min), maintained for 2 

minutes, followed by reversion to the initial configuration for 1 minute, and 3 minutes of re-equilibration. 

The total run time was 11 minutes. The source and MS parameters included: nebulizing gas nitrogen at 2 

L/min, drying gas nitrogen at 15 L/min, interface voltage 3.5 kV, DL temperature 250 ºC, oven temperature 

35 ºC, detector voltage 2.16 kV, and collision gas argon at 230 kPa. Data acquisition was done using 

LabSolutions® software. 

Statistical Analysis of Anti-inflammatory Data. The PGE2 and LTB4 signals obtained from the 

anti-inflammatory assay were normalized by Limaprost signal (IS) and statistically analysed via one-way 

analysis of variance (ANOVA) followed by Dunnett's test (p < 0.05) using GraphPad Prism® v. 8.0.1 (La 

Jolla, CA, USA). The analytical signals from the NEG samples were assumed as the control in Dunnett’s 

multiple comparisons test. The anti-inflammatory activities were expressed as the relative release of PGE2 

(rrPGE2) and LTB4 (rrLTB4), consisting of the ratio of the analytical signal of the treated samples 

(evaluated Ocotea extracts) related to NEG control samples. The uncertainties of these ratios were 

calculated by propagation of error and expressed as standard deviation (SD) (Supplemental material – 



Scheme 1). The percentage inhibition (PI) of PGE2 and LTB4 consists in complementary percentage of 

rrPGE2 and rrLTB4 respectively, thus, PIPGE2 = 1 - rrPGE2, and PILTB4 = 1 – rrLTB4. 

UPLC-HRMS/MS Experiments and Data Processing. The UPLC-MS analyses were performed 

using a Waters Xevo G2® (Milford, USA) instrument (Quadrupole Time-of-Flight - QTOF mass analyzer) 

set for profile data-independent acquisition (DIA, MSE mode). Analyses were conducted using Masslynx® 

MS Software (Waters Corp., Milford, USA). An aliquot of 5 µL of each Ocotea sample was injected, and 

separation occurred in a C18 (ACQUITY UPLC®HSS T3) reversed-phase column (1.8 μm, 100 x 2.1 mm) 

maintained at 40 ºC. The mobile phases consisted of (A) 1% acidified water with formic acid, and (B) pure 

acetonitrile, delivered at a 0.5 mL/min flow rate. The chromatographic run was: 1% B and 99% A for 0.1 

min, 85% A and 15% B for 7.5 min, 20% A and 80% B for 8.5 min, and 1% A and 99% B until 10 min. 

The electrospray (ESI) operated in both positive and negative ionization modes. The mass spectrometer 

parameters included alternating high and low-energy scans: low CE (collision energy) at 3 eV and high CE 

ramped from 10 to 40 eV, cone gas flow at 30 L/h, desolvation temperature at 300 °C, source temperature 

at 120 °C, and desolvation gas flow at 600 L/h. The mass scan range was set at m/z 50 to m/z 1000 for 

functions 1 and 2. MS data were collected in profile mode using the lock spray for calibration to ensure 

accuracy and reproducibility. Leucine-enkephalin was used as a lock mass, with m/z 554.2622 (ESI-) and 

m/z 556.2768 (ESI+) at a frequency of 10 s.  

 Before data processing the raw Waters MSE data was converted using the Waters2mzML tool to 

the universal mzML data format. Waters2mzML is freely online available 

(URL:https://github.com/AnP311/Waters2mzML/releases/tag/v1.2.0). The Ocotea extracts were processed 

using MZmine 3.8.1 (https://mzmine.github.io/) MZmine Development Team) with the following 

parameters: Mass detection of MS1 scans used scan filters at MS1 level = 1 and the centroid algorithm, with 

noise levels of 1000 (positive and negative). Feature detection utilized the ADAP Chromatogram Builder 

module with a scan filter at MS1 level = 1, a minimum of 5 consecutive scans, minimum intensity for 

consecutive scans at five times the noise level, minimum absolute height also at five times the noise level, 

and an m/z tolerance of 0.005 m/z or 10 ppm. Chromatogram resolution used the Local Minimum Feature 

Resolver with a retention time dimension, chromatographic threshold of 5%, minimum search range 

RT/mobility of 0.15, minimum absolute height equal to ADAP, peak top/edge ratio of 3, peak duration 

range of 0.2-1.0 absolute, and a minimum of 5 data points. Isotope filtering employed the 13C isotope filter 

module with an m/z tolerance of 0.003 m/z or 5.0 ppm, retention time tolerance of 0.1 absolute, monotonic 

shape set to false, maximum charge of 2, and the most intense isotope as representative. Alignment was 

done using the Join aligner with an m/z tolerance of 5 ppm, RT relative tolerance of 5%, weight for m/z. 

20, and weight for RT 20. Gap filling used the Peak Finder algorithm with an intensity tolerance of 0.2, m/z 

tolerance of 0.005 m/z or 10 ppm, RT tolerance of 0.1 absolute, and a minimum of 4 data points. Duplicate 

feature list rows were filtered using a new average filter mode with an m/z tolerance of 0.005 m/z or 10 

ppm, and an RT tolerance of 0.07 absolute. All other unspecified parameters were set to default. Processed 

data containing peak area, m/z-Rt pair was exported as a .csv table format (Table Z1 - 

https://doi.org/10.5281/zenodo.13826734). 

NMR Experiments and Data Processing. All Ocotea sp. crude extracts (n= 18) were prepared 

at a concentration of 4.5 mg per 600 µL of DMSO-d6 in 5 mm, 7-inch NMR tubes. The 1H-NMR (500 

MHz) spectra were recorded for 1D correlation spectroscopy NMR using a Bruker-Biospin Ascend 500 

https://github.com/AnP311/Waters2mzML/releases/tag/v1.2.0
https://mzmine.github.io/


instrument, Avance III series®, (Rheinstetten, Germany), operating at 11.7 T. Each spectrum was 

accumulated with 64 scans, a delay time of 4 seconds, and an acquisition time of 3.41 minutes with 32 Kb. 

A pre-saturation pulse sequence was applied to achieve one-dimensional proton spectra with effective water 

suppression (3.3 ppm). All chemical shifts were expressed in ppm relative to the deuterium solvent or TMS, 

and data were acquired and processed using TOPSPIN v.3.2 (Bruker-Biospin, Rheinstetten, Germany). 

Before MSA, the data obtained were processed with MestReNova (Mnova v.14.2.3) software (Mestrelab 

Research, Santiago de Compostela, Spain) (https://mestrelab.com/download/mnova/). The 1H-NMR 

spectra were processed, including Whittaker Smoother, automatically followed by manual phase correction 

for still non-phased spectra. Binning was applied at an integral region of 0.04 ppm using the Sum method. 

Subsequently, the spectral data were stacked and the peak intensities Excel® (Microsoft Windows) (.xlsx) 

as a text file and then converted to a .csv format file. Chemical shift (δ) values were established between 

0.0 and 12.0 ppm (Table Z2 - https://doi.org/10.5281/zenodo.13826734).  

UPLC/MS-NMR Concatenation. The output data from NMR and UPLC/MS data processing 

were then concatenated to expedite the annotation of specialized bioactive metabolite markers associated 

with the dual anti-inflammatory activity. The data was pre-combined within an Excel® spreadsheet and 

then saved in .csv format (Table Z3 - https://doi.org/10.5281/zenodo.13826734). To address the 

challenge of integrating disparate data types (UPLC-HRMS and 1H-NMR), block-wise scaling was 

employed using SIMCA-P (Umetrics©) software. This method ensures that each data type (block) 

contributes equally to the analysis, equalizing the total variance of each data block, thus preventing the 

dominance of one data type over another due to differences in magnitude, scale or variance. The UPLC/MS 

data was defined as block 1 and 1H-NMR data as block 2. Each block was scaled according to the variance 

within that block. Block scaling was implemented with the weights set according to Equation (1) as follows:  

(1)  (1 /√𝐾𝑏𝑙𝑜𝑐𝑘), where 𝐾 block is the number of variables in the block. This setting aims for the 

block to contribute a total variance of 1.  

 

Multivariate Statistical Analysis (MSA) and Data Visualisation. To analyse the features of the 

fused dataset, of the UPLC/MS and NMR data, the datasets were analysed also using SIMCA-P tools for 

the MSA. All datasets underwent previous Log data transformation and Pareto scaling prior to analysis, in 

order to completely eradicate remaining data skewness. Initially, Principal Component Analysis (PCA) was 

employed to reduce the dimensionality of the data and identify underlying patterns. Following PCA, Pareto-

scaled, Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) was conducted to 

supervise data, maximize the separation between the two groups (active and inactive) and aid find potential 

discriminant bioactive markers. The metabolomics models were validated based on the coefficient of 

determination (R2) and cross-validation (Q2) metrics > 0.5.96 To corroborate the validation of the models, 

the Root Mean Square Error of Prediction (RMSE) and CV-ANOVA were assessed, and permutation tests 

(n=100) were implemented to ensure the model's robustness and prevent overfitting. Additionally, 

additional validation metrics were applied: the Benjamini-Hochberg procedure that was applied for the 

generation of q-values of the discriminant metabolites to control the false discovery rate (FDR), ensuring 

the statistical significance of the findings.9,25,97 Variables Important in Projection (VIP) scores were 

calculated to pinpoint the most influential features contributing to the model.25,92 Correlation coefficients 

(Coef) of the variable with the dual activity were computed to explore and determine de discriminant 

https://mestrelab.com/download/mnova/


features. The area under the curve-receiver operating characteristic (AUC-ROC) was also calculated to 

corroborate validation metrics, as the graphical plots illustrate the performance of a binary classifier model 

and prediction variables (Figure S13). 

Metabolite Annotation. According to the Metabolomics Standards Initiative (MSI),98,99 

confidence level 3 annotations were performed for the discriminant features using the custom database 

search module in MZmine, by cross-matching the precursor mass with the OcoteaDB,54 which contains 

substances isolated specifically for the Ocotea genus. The set parameters included m/z tolerance of 0.005 

m/z or 10 ppm, maximum charge of 1, maximum of 2 molecules per cluster, and adduct usage true, for 

positive mode ([M+H]+, [M+Na]+, [M+K]+, [M+NH4]+) and negative mode ([M-H]-, [M+Cl]-, [M+Br]-, 

[M+FA]-). The feature tables were exported containing information on aligned peak areas, exact mass, 

retention time, molecular formula and chemical annotation for all samples (Table Z4 - 

https://doi.org/10.5281/zenodo.13826734).  To assist in a broader identification of the compounds, we 

utilized the Dictionary of Natural Products (DNP). Additionally, to enhance the confidence of the 

annotations manual literature spectral comparisons were conducted using the Mass Bank of North America 

(MoNA). The high-energy MSE    spectra were checked using the MZmine 3 raw data inspection 

visualisation modules. For those bioactive markers that did not match any entries in the MoNA database, 

the MSE product-ions were proposed based on a chemical knowledge of ESI fragmentation patterns in the 

literature.58,60 Chemical structures relevant to the study were precisely drawn using ChemDraw Ultra 12.0 

(Perkin Elmer InformaticsTM, Cambridge, England) for inclusion in the manuscript figures. 

STOCSY Correlation Analysis. Additional spectroscopic data analysis was conducted using the 

statistical total correlation spectroscopy (STOCSY) algorithm. This analysis aimed to correlate the 

important spectroscopic features generated from MSA results to identify significant correlated NMR shifts, 

thus also supporting the validation of annotated biomarkers.23,73. The processed NMR spectra segmented 

into equal-sized bins of 0.04 ppm were utilised for 1D STOCSY analyses. The input driver peaks were the 

discriminant signals of 1H NMR with FDR < 0.05. Scatter plots were built to individually visualise the 

correlations. Scripts utilized were adapted from DAF-discovery23 using the Google Colab online platform 

(https://colab.research.google.com) (script available in the https://doi.org/10.5281/zenodo.13826734), 

which several libraries were used including pandas for data structuring and manipulation, NumPy for 

numerical data handling, matplotlib for visual representation of the data, and Plotly for creating interactive 

.html graph plots. 

Prediction Models and Validation. For the construction of the input metabolomic database, 

concatenated data obtained from UPLC/MS and NMR were utilised, where variable X represented the 

discriminant UPLC/MS data (m/z, RT and peak area) and the NMR chemical shifts derived from the OPLS-

DA model, whereas the Y variable was obtained from the ex vivo anti-inflammatory assay (Table Z5-6 - 

https://doi.org/10.5281/zenodo.13826734). Binary classification models were applied to categorize 

samples into active and inactive groups based on the ANOVA and post-test statistical analysis. Logistic 

regression and ML prediction models were developed utilizing the open-source data analytics platform 

KNIME (version 5.1, https://www.knime.com). The modeling process began with the "CSV Reader" node 

to import the dataset, which represented dual anti-inflammatory activity as a binary categorical response. 

The dataset, stored in .csv files, was subsequently normalized to a range of 0 to 1 using the "Normalization" 

https://colab.research.google.com/
https://www.knime.com/


node. Following this, the "Partitioning" node was applied to partition the data through stratified sampling 

of the classes, allocating 75% of the data for training and 25% for testing. To ensure robust validation of 

the predictive model, the training dataset was partitioned using the "X-Partitioner" node in a 10-fold cross-

validation loop. This node, employing the leave-one-out parameter, iteratively trained the model by 

excluding one data point in each iteration. The excluded point was used for testing, while the remaining 

data constituted the training set. This process was repeated until all data points had been used for testing 

once, thus enhancing the model's reliability across multiple data subsets. The "X-Aggregator" node was 

utilized to compile the validation data, and the "Scorer" node was used to present the statistical results 

(Figure S14). 

To develop the metabolomic prediction models, two different algorithms were employed. Firstly, 

the LogisticBase 3.7 algorithm, a logistic regression-based method, was configured with standard 

parameters (-I 500 -WTB 0.0) (Table S7) to perform classification by modeling the probability of an 

instance belonging to a specific class. This algorithm enhances robustness by estimating parameters that 

maximize the likelihood of the observed data.100 Subsequently, an artificial neural network (ANN), known 

as Multilayer Perceptron, was implemented and configured with the following optimised parameters: -L 

0.3 -M 0.2 -N 500 -S 100 -H 46 (Table S7). The ANN is a supervised learning method that commonly 

applies backpropagation to train a multilayer perceptron before classifying and predicting instances from 

the dataset.101,102 Accuracy, precision, F-measure, mean absolute error (MAE), and root mean squared error 

(RMSE) were calculated to assess the overall performance and validation of the built models. Additionally, 

the scramble test was implemented, with the dual activity classes randomly shuffled and X features 

randomly selected, to provide additional validation for the developed metabolomic variable prediction 

models.  
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Figures 

Figure S1. Stacked UPLC/MS data of 16 Ocotea species of positive ionization mode 

exhibiting a visually higher number of peaks between RT 1.5 to 3.5 min. 

Figure S2. Stacked UPLC-MS chromatograms of 16 Ocotea species analyzed in negative 

ionization mode, displaying peaks distributed throughout the entire chromatographic 

profiles. 

Figure S3. Representative stacked NMR spectral profile of 16 Ocotea species extracts. 

Signals in the regions of δH 0.6–1.4 (methyl proton shifts), δH 1.5–2.8 (unusual methyl 

proton or methylene shifts), δH 3.0–4.0 (methoxy proton shifts), δH 4.2–5.5 (anomeric 

proton shifts), and δH 6.0–8.0 (aromatic proton shifts). 

Figure S4. Multivariate statistical analyses of the Ocotea crude extract species for 

discrimination of anti-inflammatory metabolites. Orthogonal Partial Least Square- 

Discriminant Analysis (OPLS-DA) score scatter plot (left) of UPLC/MS data and loading 

plot (right) with samples categorized according to the ex-viv  o anti-inflammatory results 

(Dual PGE2_LTB4 and Inactive). 

Figure S5. Multivariate statistical analyses of the Ocotea crude extract species for 

discrimination of anti-inflammatory metabolites. Orthogonal Partial Least Square- 

Discriminant Analysis (OPLS-DA) score scatter plot (left) of 1H NMR data and loading 

plot (right) with samples categorized according to the ex-vivo anti-inflammatory results 

(Dual PGE2_LTB4 and Inactive). 

Figure S6. Orthogonal Partial Least Square- Discriminant Analysis (OPLS-DA) of the 

concatenated UPLC/MS - NMR fused data. (A) 3D- scatter plot of the ex-vivo anti-

inflammatory results (Dual PGE2_LTB4 and Inactive). (B) Loadings plot with 

highlighted mass to charge ratios (m/z) and chemical shifts (δ). (C) Zoom of the 

highlighted discriminating features of high loading values. 

Figure S7. Permutation tests for OPLS-DA models. Permutation tests (100 permutations) 

for UPLC/MS (left) and 1H NMR (right) models. Green circles represent cumulative R²Y 

values (model fit), and blue squares represent cumulative Q² values (predictive ability). 

Dashed lines indicate trends for permuted data. For UPLC/MS, Q² = 0.00768 and NMR 

Q² = -0.611, indicating poor model predictability. 

Figure S8. Additional fragmentation mechanistic pathways proposals for the aporphine, 

noraporhines and benzylisoquinolines. 

Figure S9. All stacked 1H NMR spectra of Ocotea leaf extract samples replicates ranging 

from δH 2.55 to 3.55. This region of the spectra shows a multiplexed signal intensity in a 

common area to protons of carbohydrates. 

Figure S10. Stacked 1H NMR spectra (δH 6.00–8.00) of Ocotea leaf extract samples. The 

region shown highlights signals characteristic of aromatic protons, common to both 

alkaloids and flavonoids.  



Figure S11. Representative active Ocotea species stacked 1H NMR spectra highlighting 

the STOCSY correlation of driver peak at δH 4.89 related to aromatic signal at δH 7.29 

that appeared as a unresolved doublet. 

Figure S12. (A) STOCSY analysis of the driver peak signal at δH 3.05 revealed strong 

correlations in this region (δH 3.09) and in the aromatic region (δH 6.85) suggestive of 

adjacent CH₂ groups. (B) STOCSY analysis of the driver peak at δH 3.25 revealed high 

correlations in this region (δH 3.0-3.5) suggestive of other carbohydrate protons. 

Figure S13. Area under the curve - receiver operating characteristic (AUC-ROC) 

graphical plots illustrating the performance of a binary classifier model and their 

discriminant predictive variables. 

Figure S14. KNIME workflow for machine learning mod el training and validation. The 

workflow shows the process of reading data, filtering columns, normalizing features, and 

partitioning into training and test sets, including internal and external validation using 

cross-validation (10x) and accuracy scoring. A: Multilayer Perceptron - ANN, B: Logistic 

Regression 

Figure S15-S20. Low and high energy MSE spectra of level 2 annotated bioactive 

markers as potential dual anti-inflammatory agents. 

Scheme 1. Uncertainty of a quotient (Z) - propagation error equation.



Table S1. Statistical analysis was conducted using one-way ANOVA followed by Dunnett's multiple comparison test for PGE2 inhibition levels. 

Dunnett's multiple comparisons test Mean Diff. 95.00% CI of diff. Significant? Summary Adjusted p-value 

NEG vs. DEX 0.6367 0.4320 to 0.8413 Yes **** <0.0001 

NEG vs. IND 0.7526 0.5480 to 0.9573 Yes **** <0.0001 

NEG vs. O. pulchella 0.4906 0.2638 to 0.7174 Yes **** <0.0001 

NEG vs. O. teleiandra 0.4928 0.2460 to 0.7397 Yes **** <0.0001 

NEG vs. O. tenuiflora 0.5174 0.2906 to 0.7441 Yes **** <0.0001 

NEG vs. O. spixiana 0.4683 0.2215 to 0.7152 Yes **** <0.0001 

NEG vs. O. tabacifolia 0.4436 0.2168 to 0.6703 Yes **** <0.0001 

NEG vs. O. tristis 0.7161 0.4894 to 0.9429 Yes **** <0.0001 

NEG vs. O. vaccinioides 0.5286 0.3019 to 0.7554 Yes **** <0.0001 

NEG vs. O. villosa 0.7489 0.5021 to 0.9958 Yes **** <0.0001 

NEG vs. O. velloziana 0.5469 0.3000 to 0.7938 Yes **** <0.0001 

NEG vs. O. bachybotria 0.2041 -0.04281 to 0.4509 No ns 0.1705 

NEG vs. O. bragai 0.2001 -0.04673 to 0.4470 No ns 0.1885 

NEG vs. O. glauca 0.2104 -0.03644 to 0.4573 No ns 0.1441 

NEG vs. O. glaziovii 0.2210 -0.02589 to 0.4678 No ns 0.1079 

NEG vs. O. lancifolia 0.1287 -0.1182 to 0.3756 No ns 0.7458 

NEG vs. O. langsdorffi 0.2194 -0.02746 to 0.4663 No ns 0.1127 

NEG vs. O. glaucina 0.1433 -0.1035 to 0.3902 No ns 0.6113 

Note: ns – non significant. *Statistical difference. 
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Table S2. Statistical analysis was conducted using one-way ANOVA followed by Dunnett's multiple comparison test for LTB4 inhibition levels. 

Dunnett's multiple comparisons test Mean Diff. 95.00% CI of diff. Significant? Summary Adjusted p-value 

NEG vs. DEX 0.08476 0.04064 to 0.1289 Yes **** <0.0001 

NEG vs. O. pulchella 0.06627 0.02215 to 0.1104 Yes *** 0.0006 

NEG vs. O. teleiandra 0.06645 0.02232 to 0.1106 Yes *** 0.0005 

NEG vs. O. tenuiflora 0.07799 0.02995 to 0.1260 Yes *** 0.0002 

NEG vs. O. spixiana 0.04512 0.0009965 to 0.08925 Yes * 0.0420 

NEG vs. O. tabacifolia 0.04633 0.002198 to 0.09045 Yes * 0.0338 

NEG vs. O. tristis 0.08521 0.04108 to 0.1293 Yes **** <0.0001 

NEG vs. O. vaccinioides 0.06798 0.02385 to 0.1121 Yes *** 0.0004 

NEG vs. O. villosa 0.08499 0.04086 to 0.1291 Yes **** <0.0001 

NEG vs. O. velloziana 0.07404 0.02600 to 0.1221 Yes *** 0.0004 

NEG vs. O. bachybotria 0.01731 -0.02681 to 0.06144 No ns 0.9513 

NEG vs. O. bragai 0.03014 -0.01398 to 0.07427 No ns 0.3848 

NEG vs. O. glauca 0.02745 -0.01668 to 0.07158 No ns 0.5115 

NEG vs. O. glaziovii 0.01865 -0.02548 to 0.06278 No ns 0.9178 

NEG vs. O. lancifolia 0.01813 -0.02600 to 0.06225 No ns 0.9323 

NEG vs. O. langsdorffi -0.003171 -0.04730 to 0.04096 No ns 0.9997 

NEG vs. O. glaucina -0.03186 -0.07990 to 0.01618 No ns 0.4243 

Note: ns – non significant. *Statistical difference. 

 

 

Table S3. The list of potential bioactive markers annotated as confidence level 4 positively correlated with anti-inflammatory activity by inhibiting 

the release of PGE2 and LTB4.  
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ID 

 

RT 

a 

 

Observed 

m/z 

 

M8.VIP 

b 

 

CorrCoef  

b 

 

q-value 

(FDR) 

 

AUC 

 

MF 

 

Error 

(ppm) 

 

Sample 

 

Hits DNP 

786_P 4.9 290.269 1.5586 0.158639 4.39E-02 0.80 C16H35NO3 -1.4 O. villosa 1 hit- plants - phytosphingosine derivatives 

938_P 5.7 302.304 3.00399 0.266747 4.98E-02 0.64 C18H39NO2 -5.9 O. villosa 1 hit- animals - fatty acids 

1104_

P 
7.2 374.362 1.83946 0.209747 3.26E-02 0.89 C22H47NO3 -2.7 O. tabacifolia 0 hits 

199_N 2.1 415.123 2.54787 0.271011 4.20E-02 0.83 C18H24O11 -3.8 O. villosa 
15 hits - plants - Caffeoylglycerol  glycoside 

derivatives 

287_N 2.5 429.14 2.31824 0.230898 4.23E-02 0.71 C19H26O11 0.5 
O. villosa / O. 

tristis 

16 hits - plants - Caffeoylglycerol  glycoside 

derivatives 

1259_

N 
9.5 461.364 1.90427 0.259117 4.56E-02 0.88 C29H50O4 0.6 O. vaccinoides 27 hits - plants - Stigmasterol derivatives 

499_N 2.9 503.177 3.08045 0.367132 4.77E-02 0.59 C22H32O13 -0.4 O. spixiana 
14 hits - plants -Sinapyl alcohol glycoside 

derivates 

229_N 2.2 565.25 2.32456 0.186682 4.87E-02 0.53 C25H42O14 0.1 O. villosa 0 hits 

361_N 2.6 597.22 1.64886 0.194322 4.09E-02 0.61 C28H38O14 1.7 O. tabacifolia 
15 hits - plants - epoxy neolignans 

glucopyranosides 

a Retention Time, b Variant Important in Projection, c Correlation coefficients Y variable, d False Discovery Rate, e Molecular formula. # The 'Sample' column indicates the Ocotea extract 

with the highest peak area associated with each respective bioactive marker. 
 

 

Table S4. Ocotea sample was assigned an identification code (ID) detailed along with the geographical location of the plant collection, deposit 

voucher numbers and respective dried extract and yield. 
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ID Popular name Scientific name Geographical location Voucher Dried extract Yield 

BA II louro-verdadeiro Ocotea brachybotrya (Meisn.) Mez 19°35′28.0″S 42°34'′07.0″ W CESJ 45562 4.9 mg 9.8 % 

BR II unknown Ocotea bragai Coe-Teix. x CESJ 43604 12.0 mg 24.0 % 

GL I louro Ocotea glauca (Nees & Mart.) Mez 20°22′40.0″S 43°24′57.9″ W OUPR 5467 5.9 mg 11.8 % 

GZ II canela-amarela Ocotea glaziovii Mez x CESJ 50895 7.7 mg 15.4 % 

LC II canela-sabão Ocotea lancifolia (Schott) Mez 18°06′54.0″S 43°20′28.0″ W CESJ 45567 10.9 mg 21.8 % 

LG I unknown Ocotea langsdorffii (Meisn.) Mez x CESJ 16362 7.6 mg 15.2 % 

GU II unknown Ocotea glaucina (Meisn.) Mez 16º35′'47.0″S 42º54′05.0″ W CESJ 50402 5.2 mg 10.4 % 

PC II canela-lageana Ocotea pulchella (Nees & Mart.) Mez 21°55′24.9″S 46°23′09.9″ W CESJ 49900 8.0 mg 16.0 % 

TA I unknown Ocotea tabacifolia (Meisn.) Rohwer x OUPR 45565 10.1 mg 20.2 % 

TL II canela-limão Ocotea teleiandra (Meisn.) Mez x CESJ 34581 6.1 mg 12.2 % 

TE II  unknown Ocotea tenuiflora (Nees) Mez x CESJ 33596 8.7 mg 17.4 % 

TR I canelinha Ocotea tristis (Nees & Mart.) Mez 20°17′15.0″S 43°30′29.1″ W OUPR 6504 6.4 mg 12.8 % 

VA I unknown Ocotea vaccinioides (Meisn.) Mez/Ocotea daphnifolia x OUPR 18269 9.0 mg 18.0 % 

SX I canelão Ocotea spixiana (Nees) Mez 20°17′15.0″S 43°30′19.1″ W OUPR 1390 7.5 mg 15.0 % 

VZ II canela-verde Ocotea velloziana (Meisn.) Mez x CESJ 20721 7.1 mg 14.2 % 

VI II unknown Ocotea villosa Kosterm. x CESJ 50002 11.3 mg 22.6 % 

Note: CESJ herbarium – Federal University of Juiz de Fora (UFJF) and OUPR herbarium from Federal University of Ouro Preto (UFOP) in Brazil 

 

 

Table S5. Multiple Reaction Monitoring (MRM) experiments were performed for each analyte (PGE2, LTB4 and Limaprost – internal standard), 

according to their specific m/z transitions. 

Analyte ESI mode Precursor (m/z) Product (m/z) Dwell time (msec) Q1 Pre Bias (V) CE Q3 Pre Bias (V) 
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LTB4 - 335.2 195.2 100 11 18 19 

LTB4 - 335.2 59.1 100 14 25 20 

PGE2 - 351.2 271.2 100 14 20 17 

PGE2 - 351.2 315.25 100 14 15 21 

PGE2 - 351.2 333.35 100 11 15 23 

Limaprost - 379.2 343.45 100 11 13 24 

Limaprost - 379.2 299.3 100 14 21 21 

 

Table S6.  Performance evaluation of LogisticBase and ANN models for scramble data. 
ML algorithms  Accuracy (%) Cohen's Kappa 

LogisticBase 

Training 67 0 

External Validation 60 0 

Internal Validation 58 -0.1 

ANN 

Training 100 1 

External Validation 50 -0.3 

Internal Validation 54 0.1 

 

 

 

 

 

Table S7. Parameters description of prediction models: logistic regression and ANN. 

Method Parameter Values Description 

 H_hiddenLayers 46 The hidden layers are to be created for the network. 
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ANN L_learningRate 0.3 Learning Rate for the backpropagation algorithm. 

M_momentum 0.2 Momentum Rate for the backpropagation algorithm 

N_traningTime 500 Number of epochs to train through. 

S_seed 100 The value used to seed the random number Generator 

Decay False Learning rate decay will occur. (Set this to cause the learning rate to decay). 

Reset True  Resetting the network will NOT be allowed. (Set this to not allow the network to reset) 

Nominaltobinaryfilter True A NominalToBinary filter will NOT automatically be used. 

 

 

LogisticBase 

 

 

Debug 

 

False  

 

Outputs detailed information about the model's training process 

maxIterations 500 Maximum number of iterations that the Logistic Regression algorithm can perform during the optimization process 

useAIC 
False  To evaluate model quality by balancing goodness of fit and model complexity, penalizing models with excessive 

parameters 

weighttrimBeta 0.0  It defines a threshold to trim instances with very small weights during the training process. 

 

 

Figure S1. Stacked UPLC/MS data of 16 Ocotea species of positive ionization mode exhibiting visually higher number of peaks between RT 1.5 

to 3.5 min.  
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Figure S2. Stacked UPLC-MS chromatograms of 16 Ocotea species analyzed in negative ionization mode, displaying peaks distributed throughout 

the entire chromatographic profiles. 



144 

 

 

Figure S3. Representative stacked NMR spectral profile of 16 Ocotea species extracts. Signals in the regions of δH 0.6–1.4 (methyl proton shifts), 

δH 1.5–2.8 (unusual methyl proton or methylene shifts), δH 3.0–4.0 (methoxy proton shifts), δH 4.2–5.5 (anomeric proton shifts), and δH 6.0–8.0 

(aromatic proton shifts). 
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Figure S4. Multivariate statistical analyses of the Ocotea crude extract species for discrimination of anti-inflammatory metabolites. Orthogonal 

Partial Least Square- Discriminant Analysis (OPLS-DA) score scatter plot (left) of UPLC/MS data and loading plot (right) with samples categorized 

according to the ex-vivo anti-inflammatory results (Dual PGE2_LTB4 and Inactive). 
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Figure S5. Multivariate statistical analyses of the Ocotea crude extract species for discrimination of anti-inflammatory metabolites. Orthogonal 

Partial Least Square- Discriminant Analysis (OPLS-DA) score scatter plot (left) of 1H NMR data and loading plot (right) with samples categorized 

according to the ex-vivo anti-inflammatory results (Dual PGE2_LTB4 and Inactive). 

 

 

 

 

 



144 

 

Figure S6. Orthogonal Partial Least Square- Discriminant Analysis (OPLS-DA) of the concatenated UPLC/MS - NMR fused data. (A) 3D- scatter 

plot of the ex-vivo anti-inflammatory results (Dual PGE2_LTB4 and Inactive). (B) Loadings plot with highlighted mass to charge ratios (m/z) and 

chemical shifts (δ). (C) Zoom of the highlighted discriminating features of high loading values. 
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Figure S7. Permutation tests for OPLS-DA models. Permutation tests (100 permutations) for UPLC/MS (left) and 1H NMR (right) models. Green 

circles represent cumulative R²Y values (model fit), and blue squares represent cumulative Q² values (predictive ability). Dashed lines indicate 

trends for permuted data. For UPLC/MS, Q² = 0.00768 and NMR Q² = -0.611, indicating poor model predictability. 

 

 

 

 

 

 

 

Figures S8. Additional fragmentation mechanistic pathways proposals for the aporphine, noraporhines and benzylisoquinolines.  
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Figure S9. All stacked 1H NMR spectra of Ocotea leaf extract samples replicates ranging from δH 2.55 to 3.55. This region of the spectra shows 

a multiplexed signal intensity in a common area to protons of carbohydrates. 
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Figure S10. All stacked 1H NMR spectra (δH 6.00–8.00) of Ocotea leaf extract samples replicates. The region shown highlights signals 

characteristic of aromatic protons, common to both alkaloids and flavonoids. 
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Figure S11. Representative active Ocotea species stacked 1H NMR spectra highlighting the STOCSY correlation of driver peak at δH 4.89 related 

to aromatic signal at δH 7.29 that appeared as an unresolved doublet. 
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Figure S12.  (A) STOCSY analysis of the driver peak signal at δH 3.05 revealed strong correlations in this region (δH 3.09) and in the aromatic 

region (δH 6.85) suggestive of adjacent CH₂ groups. (B) STOCSY analysis of the driver peak at δH 3.25 revealed high correlations in this region 

(δH 3.0-3.5) suggestive of other carbohydrate protons. 
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Figure S13. Area under the curve - receiver operating characteristic (AUC-ROC) graphical plots illustrating the performance of a binary classifier 

model and their discriminant predictive variables. 
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Figure S14. KNIME workflow for machine learning model training and validation. The workflow shows the process of reading data, filtering 

columns, normalizing features, and partitioning into training and test sets, including internal and external validation using cross-validation (10x) 

and accuracy scoring. A: Multilayer Perceptron - ANN, B: Logistic Regression 

 

 

  

Figure S15. Low and high energy MSE spectra of the ion at m/z 314.1769 / RT 1.71 annotated as armepavine (M+H; sample: VA). 
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Figure S16. Low and high energy MSE spectra of the ion at m/z 344.1870 / RT 1.97 annotated as laudanine (M+H; sample: VI). 
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Figure S17. Low and high energy MSE spectra at m/z 328.1538 / RT 1.94 annotated as laurotetanine / norisocorydine (M+H; sample: VZ). 
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Figure S18. Low and high energy MSE spectra of the ion at m/z 328.1538 / RT 1.97 annotated as isoboldine or boldine (M+H; sample: VI).  
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Figure S19. Low and high energy MSE spectra of the ion at m/z 449.1080 / RT 2.62 annotated as astilbin (M-H; sample: TL). 
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Figure S20. Low and high energy MSE spectra of the ion at m/z 247.1330 / RT 5.57 annotated as 4-oxo-lanceolic acid (M-H; sample: PC).  
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Scheme 1 – uncertainty of a quotient (Z) propagation error equation 
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Calculating the uncertainty (σz) of a quotient (Z) according to propagation of error. In this case, X and Y are experimental (average) 

measurements and σx and σy are their respective uncertainties, expressed by standard deviation (SD). 

If:  

𝑍 =
𝑋

𝑌
                                                   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

So: 

𝜎𝑍 = 𝑍 ∗ √(
𝜎𝑋

𝑋
)

2

+ (
𝜎𝑌

𝑌
)

2

             (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

Reference: Daniel T. Holmes & Kevin A. Buhr. Error propagation in calculated ratios. Clinical biochemistry. (2007) 40.9-10: 728-734. DOI: 

10.1016/j.clinbiochem.2006.12.014  
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6  CHAPTER IV – DIA-MS DATA PROCESSING AND MOLECULAR 

NETWORKING PIPELINE 

 

Chapter IV containing the published research is separately provided as an 

attached material of this thesis. 
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Abstract

Liquid chromatography coupled with high-resolution mass spectrometry data-independent acquisition (LC-HRMS/DIA), including 
MSE, enable comprehensive metabolomics analyses though they pose challenges for data processing with automatic annotation 
and molecular networking (MN) implementation. This motivated the present proposal, in which we introduce DIA-IntOpenStream, 
a new integrated workflow combining open-source software to streamline MSE data handling. It provides ‘in-house’ custom database 
construction, allows the conversion of raw MSE data to a universal format (.mzML) and leverages open software (MZmine 3 and MS-DIAL) 
all advantages for confident annotation and effective MN data interpretation. This pipeline significantly enhances the accessibility, 
reliability and reproducibility of complex MSE/DIA studies, overcoming previous limitations of proprietary software and non-universal 
MS data formats that restricted integrative analysis. We demonstrate the utility of DIA-IntOpenStream with two independent datasets: 
dataset 1 consists of new data from 60 plant extracts from the Ocotea genus; dataset 2 is a publicly available actinobacterial extract 
spiked with authentic standard for detailed comparative analysis with existing methods. This user-friendly pipeline enables broader 
adoption of cutting-edge MS tools and provides value to the scientific community. Overall, it holds promise for speeding up metabolite 
discoveries toward a more collaborative and open environment for research. 

Keywords: chemical annotation; data-independent acquisition; open software; Ocotea; mass spectrometry 

INTRODUCTION 
Classical purification/isolation procedures for chemical charac-
terization in the field of natural products (NPs) are known for their 

laborious nature, involving multiple chromatographic steps and 
frequently afford well-known compounds. To solve this problem, 
more recently, chemical annotation using liquid chromatography 
coupled with high-resolution mass spectrometry (LC-HRMS) has
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become the gold standard in the pursuit of a more rapid and 
efficient metabolite content assessment for either known com-
pounds, as well as the isolation of the unknown ones [1–4]. 

Data-independent acquisition (DIA) is a mass spectrometry 
(MS) acquisition mode that systematically fragments precursor 
ions within a specific mass-to-charge ratio (m/z) range. It has 
the advantage of detecting low-abundance metabolites, which 
are often overlooked by conventional data-dependent acquisition 
(DDA) methods, due to their unavoidable loss of MS data coverage 
[5, 6]. MSE, developed by Waters™ for Quadrupole Time of Flight 
(Q-TOF) MS analyzers, is a DIA method that fragments all pre-
cursor ions within the entire acquisition window by alternating 
between low- and high-collision energies, thereby obtaining con-
secutive scans of precursors and their fragments. This unbiased 
tandem MS approach is therefore considered DIA due to its unbi-
ased fragmentation of precursors, irrespective of their abundance 
[7, 8]. The terms MSall and all-ion fragmentation (AIF) have been 
also employed for a similar type of fragmentation with Orbitrap 
analyzer-based instruments from Thermo Fisher™ [5, 7, 9]. 

Despite the advancement in MS techniques, challenges persist, 
especially in software availability for processing data obtained 
through DIA methods. While there are robust options for 
proprietary-specific software, e.g. UNIFI (Waters™), open software 
options are limited. In this scenario, the MS-DIAL is an extensively 
used option for users of a wide variety of mass spectrometers. 
Other more recent approaches for processing and annotation 
include DIAMetAlyzer, DecoID and MetaboMSDIA, each of which 
has particular advantages and limitations [10–13]. 

In molecular networking (MN), each processed mass spectrum 
is represented as a node, and spectral similarities between nodes 
can be calculated using different algorithms such as the cosine 
similarity of the Global Natural Product Social Molecular Net-
working (GNPS) [14, 15]. Despite its potential, processing only DIA-
MS data for automated annotation and MNs in metabolomics 
remains challenging compared to the well-established DDA work-
flows  [14, 16]. Therefore, these challenges have motivated the 
DIA-IntOpenStream pipeline to be built. The present study brings 
novelty by offering a comprehensive pipeline for processing LC-
HRMS-DIA/MSE data that automates the generation of custom 
databases using free commercial software. We additionally show-
cased the pipeline’s advantages with the successful utilization 
of  the universal  .mzML MS data format to process,  annotate  
and generate functional MN. Finally, we focus on the current 
challenges in LC-HRMS-DIA/MSE data analysis, offering strategies 
to mitigate these drawbacks and providing critical insights for 
future advancements. 

This integrative approach enhances confidence in the annota-
tion of known compounds and facilitates the discovery of novel 
and/or structurally related compounds. Therefore, it also enables 
the prioritization of unknown metabolites of interest for fur-
ther investigation. Our study validates the DIA-IntOpenStream 
pipeline with two independent datasets. Dataset 1 consists of 
LC-HRMS/DIA data from 60 Ocotea plant extracts, showcasing 
the pipeline’s applicability in plant metabolomics. Dataset 2 is a 
publicly available actinobacterial extract dataset enriched with 
a diverse pool of chemical authentic standards, encompassing a 
range of antimicrobial and naturally occurring compounds. The 
inclusion of known standards allows evaluation of the pipeline’s 
annotation accuracy and efficiency. Thus, this dataset provides a 
solid foundation for a detailed comparative study with the orig-
inal well-designed research that has performed the study using 
non-open software [17]. A key advantage of DIA-IntOpenStream 
is that it relies exclusively on open-source software. Thus, it is a 

cost-effective alternative to achieve equivalent and even comple-
mentary results to the standard approaches, thereby also enabling 
high-quality metabolomics analysis based on LC-MS/DIA data. 

RESULTS 
General pipeline workflow 
LC-HRMS/DIA techniques such as MSE generate highly complex 
datasets that require specialized software for processing and 
annotation. Until recently, MN generation required vendor 
software or the use of non-universal MS data format (e.g. ABF from 
MS-DIAL), limiting the execution of integrated and fully MSE data 
analyses. In contrast, DIA-IntOpenStream uses a standardized 
MS data format (.mzML) and open software tools for MSE data 
processing and annotation. The integrated workflow provides 
enhanced confidence for general, automated annotation strate-
gies and provides an accessible way to increase the reliability 
of metabolome annotation coverage using DIA data. Indeed, the 
pipeline is adaptable for any MSE or AIF LC-MS analysis. Step 1 
starts with the raw MSE acquisition data. In step 2, MSE raw data 
are converted into standard .mzML format using a Waters2mzML 
(https://github.com/AnP311/Waters2mzML ), first published to 
GitHub in late 2022; however it is still under development and 
limited to Microsoft Windows operating systems. Waters2mzML 
implements a Python-based wrapper for ProteoWizard msConvert 
(https://proteowizard.sourceforge.io/ ), the most used open MS 
converter software. Step 3 is the Konstanz Information Miner 
(KNIME) workflow that can be rapidly executed, and the result 
is the generation of custom ‘in-house’ databases (DBs). These 
DBs are imported in the following steps 4 (MZmine 3 processing) 
and 5 (MS-DIAL processing). Step 3 is important for automatic 
enhanced annotation with level 3 of confidence during the data 
processing steps, leveraging the quality, processing power and 
annotation of both MZmine 3 and MS-DIAL 4.9 software [ 18, 19]. 
Of note, the generated KNIME database output is exported as 
a .csv file and subsequently imported into MZmine 3, while 
a.txt file is used for MS-DIAL. Furthermore, from MS-DIAL, DIA 
data are exported in .mgf spectra format together with the 
GNPS feature table (.csv). In step 6, these two files and the 
additional metadata are submitted using WinSCP remote server 
software for feature-based molecular networking (FBMN) in the 
GNPS platform. Step 7 applies FBMN analysis and automated 
annotation with level 2 of confidence. Step 8 consists of semi-
automated strategies in Cytoscape software that are employed 
for data, inspection, visualization and integration of FBMN and 
in-house DB annotations. 

The integration of the processed data with online MS spectral 
libraries allowed for the automated annotation of metabolites. 
Supplementation with data gathered from customized ‘in-house’ 
annotations has bolstered confidence in the annotation of the 
molecular families generated. The construction of tailored in-
house DBs with metabolites of interest is critical to increase 
annotation reliability, as it provides matches with metabolites 
specific to a given taxon under investigation. For example, 
the utilization of the OcoteaDB and ActinomarineDB built with 
KNIME dramatically enhanced the reliability of our metabolite 
annotations by reducing the likelihood of potential false positives, 
thereby increasing true hits. Overall, strategic integration of 
automatic custom, automated ‘in-house’ annotations with 
online libraries and optimized GNPS parameters described in 
this pipeline enables MN with robust metabolite annotation of 
DIA/MSE data, as schematically demonstrated in Figure 1.
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Figure 1. Schematic representation of the integrated process for generating an ‘in-house’ automatic database and performing LC-HRMS/DIA data 
processing to create molecular networking. After data acquisition (step 1), LC-HRMS/DIA data are converted to the standardized .mzML universal format 
using Waters2mzML V1.2.0 (step 2). Custom ‘in-house’ DB specific to the research is automatically prepared in the KNIME platform (step 3) using drawn 
chemical structures or can be downloaded from online libraries in various standard formats (.mol, .mol2, .sdf). Table formats (.csv) containing SMILES, 
CAS number, InchKey, or IUPAC chemical name can also be utilized. The converted .mzML data are then imported into MZmine 3 (step 4) and MS-DIAL 
(step 5) for processing, where the output ‘in-house’ DB generated in KNIME is integrated to enable automatic annotation (level 3 of confidence). MS-
DIAL exports the align results as a GNPS feature table (.txt) and MS2 file (.mgf) that along with the custom metadata (.txt) are submitted via WinSCP 
remote server software to the GNPS environment (step 6). Feature-Based Molecular Networking (FBMN) analysis with automated level 2 of confidence 
annotation is performed on GNPS (step 7). Semi-automated strategies in Cytoscape software are employed for the data visualization and integration of 
FBMN and in-house DB annotations at levels 2 and 3 of confidence, respectively (step 8). ∗Low energy channel scans (LECS)/MS1. 

In-house database and KNIME workflow 
In general, this workflow accepts the four most common types 
of chemical input data, namely, .mol, .mol2, .sdf and .csv. The 
table input files could be formatted as Simplified Molecular Input 
Line Entry System (SMILES), International Chemical Identifier 
(InChIKey), Chemical Abstracts Service (CAS) number or Interna-
tional Union of Pure and Applied Chemistry (IUPAC) names. The 
output is a .csv file with three columns: chemical structure name, 
calculated molecular formula and calculated monoisotopic mass. 
To generate the OcoteaDB dataset, the KNIME workflow was run 
with 492 molecular structures from Ocotea spp. in .mol format, 
drawn from online databases. The total runtime of the workflow 
was 84 s (see  Methods section for desktop configuration check) 
and was used for later ‘in-house’ annotation during data pro-
cessing. The ActinomarineDB dataset was generated with 6481 NPs 
sourced from the online npatlas database (https://www.npatlas. 
org/ ) in .csv format and comprised of the genera of Actinomyces, 
Streptomyces, Salinospora, Micromonospora, Nocardia, Actinomadura 
and Rhodococcus, running for 63 s. The OcoteaDB and the Actino-
marineDB .csv files were successively uploaded into MZmine 3 for 
annotation. Additionally, .txt export versions can be imported into 
MS-DIAL for annotation. Figure 2 illustrates the reader, converter 
and writer nodes. 

LC-HRMS data conversion and processing 
Dataset 1 along with quality controls (QCs) and blanks in 
the Waters™ .raw format was effectively converted with 
Waters2mzML to generate functional centroided .mzML files. 
The same step was performed for dataset 2. These conversions 
took ∼36 and 1.5 h, respectively, on our computer configuration 
(detailed in the Methods section). The files were then processed 

using the MZmine 3 and MS-DIAL 4.9. For MZmine 3, despite 
the large cohort of dataset 1, final batch processing required 
only ∼7 min per ionization mode, while dataset 2 took only 
1 min. While actual processing is quite fast (a few minutes), 
software parameter optimization is time-demanding, although 
empowers robust data processing for complex samples. Dataset 
1 yielded 18 805 aligned features in the positive mode, including 
3983 annotation hits from OcoteaDB with all potential adducts 
identified. Similarly, the negative mode yielded 23 304 features 
with 3216 database annotation hits. 

In contrast, the positive mode analysis with MS-DIAL 4.9 
required ∼2.11 h for dataset 1, resulting in the annotation of 
22 572 features, while the analysis from the negative mode 
analysis took around 1.58 h, yielding 21 838 features. For dataset 
2, MS-DIAL 4.9 processing required only 4 min. The dataset 
acquisition parameters and data size have a great influence 
on processing time, especially aligning an elevated number 
of samples, as in the case of dataset 1. In addition, despite 
inherent variations in parameters and algorithms employed by 
the two programs, the results generated were comparable. More 
specifically, MS-DIAL exhibited a longer processing time as it 
can appropriately process and assign MS2 fragment ions to MS1 

precursor ions in DIA data. This step is the slowest during data 
processing and is particularly mandatory for MN implementation. 
Details of the dataset 2 processing results are provided at SM-4 
and 5. 

Although DIA processing algorithms are present in MZmine 
3, they were not employed in this pipeline as they remain in an 
experimental phase without publicly available guides or tuto-
rials to standardize parameter values, different from DDA data 
processing, which is very well established. As such, we used 
MZmine only to perform MS1 data processing, which explains
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Figure 2. KNIME workflow for high confidence in-house automatic database assembly. The workflow includes .mol, .mol2 and .sdf chemical structures 
as input data for the respective node readers. The last node is a .csv table reader that accepts tables containing either SMILES, CAS numbers, InChIKey 
or IUPAC names as input data. The final output is a .csv (or .txt) file with three columns: chemical name, calculated molecular formula and calculated 
monoisotopic mass. The in-house DB specific for the aiming samples can now be integrated into the data processing step to increase confidence in the 
metabolite annotation. 

the increased speed of data processing results when compared 
to MS-DIAL. Nevertheless, despite this limitation, we highlight 
that the MZmine 3 demonstrates remarkable transparency and 
guidance in data processing and annotation. Further insights and 
considerations are further provided in the Discussion section. 

Chemical annotation 
Following established guidelines for untargeted metabolomics, 
QC samples were prepared for dataset 1. After data analyses, con-
sistent peak distributions and reproducible metabolic fingerprints 
across the QC injections were observed (Figures 3 and S1). Using 
QC samples to ensure that predefined quality thresholds are met 
is a critical step, thereby validating that the analytical system can 
acquire high-quality metabolomics data from the experimental 
samples [20, 21]. The developed LC-HRMS/MSE method effectively 
separated and detected major and minor metabolite components 
in Ocotea spp. The comprehensive list of annotations with level 2 
of confidence for the acquired metabolic fingerprint is shown in 
Table 1. Even with the complexity of our metabolomics data, care-
ful and rigorous data processing led to reliable and clear repro-
ducible results, as shown by the superimposed chromatograms 
of experimental replicates (Figure S2). The superimposed chro-
matograms of extract samples and QCs from both positive and 
negative modes are illustrated in Figures 3 and S3–S5, evidencing 
the high chemical complexity of data. Details of dataset 2 are 
provided in Figures S16–S18 and Tables S3 and S4. 

For dataset 1, alkaloids, lignoids and flavonoids were the main 
annotated classes in the Ocotea spp. samples (Figure 3). In the 
positive mode, high-intensity levels were observed for an amino 
acid derivative 4-hydroxy-N-methylproline (1, m/z 146.0812—Rt 

0.49 min), the morphinan alkaloid isomers of flavinantine (9, 
m/z 328.1546—Rt 1.75 min), the aporphine alkaloid isoboldine 
(11, m/z 328.1546—Rt 1.96 min), also some lignoids, including 
the ocophyllol B (43, m/z 359.1856—Rt 5.38 min) and flavonoids 
such as apigenin-7-O-rutinoside (61, m/z 577.1569—Rt 2.75 min) 

and the kaempferol 3-(2′′,4′′-di-(E)-p-coumaryl-rhamnoside) (66, 
m/z 723.1728—Rt 5.46 min). Alkaloids and lignoids were ionized 
mainly in the positive mode, while flavonoids were annotated in 
the negative ionization mode. 

Aporphines and benzylisoquinoline alkaloids were annotated 
as major compounds, all of which have known fragmentation 
patterns and were typically distinguished from each other 
by neutral losses (Figure 4). Fragmentation patterns of the 
morphinandienones and phenanthrenes alkaloids, as well 
as the NP subclasses of lignoids and flavonoids, were also 
demonstrated (Figures 5 and 6). Automated integration of ‘in-
house’ DB by matching MS1 monoisotopic masses enabled 
manual examination of MSE spectra using MZmine 3, leading 
to level 2 confidence identification of 66 specialized metabolites. 
No public mass spectral data were available for 15 annotated 
metabolites, so fragmentation was proposed based on relevant 
literature and chemical knowledge. Thus, for these metabolites, 
level 2 of confidence was given based on the classification by 
Schymanski et al. [22]. Diagnostic ion fragments were searched 
on the Mass Bank of North America (MoNA) and GNPS libraries. 
In parallel, automated annotation of MSE spectra via MS-DIAL-
GNPS-FBMN identified 155 NPs. A comparison between the 
manual and automated annotations revealed just 18 shared 
annotations (Table 1). The complete observed product ions and 
GNPS annotations are detailed in Table S1 and online (https:// 
zenodo.org/records/10383866 ), respectively. 

Gas-phase fragmentation reactions 
The key distinction observed for alkaloids was based on the N-
substitution pattern. Norapomorphines showed a 14.01 Da mass 
reduction versus aporphines due to the presence of a radical 
hydrogen instead of a methyl N-substitution. This allowed a dis-
tinction between the two alkaloid subclasses. Prevalent neutral 
losses were 17.03 Da (NH3) and 31.01 Da (CH3NH2) from iso-
quinoline ring opening (Figure 4). Additionally, losses of CH3OH
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Table 1: ESI-MSE positive and negative modes including annotation with level 2 of confidence of Ocotea metabolites from based on the 
in-house database. This table includes 41 alkaloids (pyrrolidine, proaporphine, noraporphine, aporphine, benzylisoquinoline, 
morphinandienone and protoberberine subclasses), 6 lignoids (1 lignan and 5 neolignans), 18 flavonoids (glycosylated quercetin, 
kaempferol and apigenin derivative subclasses) and a cyclic polyol. The last two columns indicate the MS2 spectral source used for 
manual annotation and if spectra were matched automatically on the GNPS platform, respectively 

ID Rt 
(min) 

Putative 
metabolite 

Metabolite class MF Ocotea 
DB 

Observed 
m/z 

Adduct Error 
(ppm) 

Spectral 
references 

Automatic 
GNPS 
annotation 

1 0.49 4-Hydroxy-N-
methylproline 

Pyrrolidine alkaloid C6H11NO3 Yes 146.08119 [M + H]+ 0.14 Proposed No 

2 1.45 Crotsparine Proaporphine alkaloid C17H17NO3 Yes 284.12770 [M + H]+ −1.48 GNPS Yes 
3 1.48 Glaziovine Proaporphine alkaloid C18H19NO3 Yes 298.14359 [M + H]+ −0.60 GNPS No 
4 1.52 N-Methylcoclau-

rine 
Benzylisoquinoline alkaloid C18H21NO3 Yes 300.15932 [M + H]+ −0.33 GNPS No 

5 1.60 3-Hydroxynornu-
ciferine 

Noraporphine alkaloid C18H19NO3 Yes 298.14355 [M + H]+ −0.74 GNPS Yes 

6 1.61 Laurelliptine Noraporphine alkaloid C18H19NO4 Yes 314.13850 [M + H]+ −0.57 Proposed No 
7 1.74 Laurolitsine Noraporphine alkaloid C18H19NO4 Yes 314.13853 [M + H]+ −0.48 GNPS No 
8 1.63 Pallidine Morphinandienone alkaloid C19H21NO4 Yes 328.15444 [M + H]+ 0.34 GNPS No 
9 1.81 Flavinantine Morphinandienone alkaloid C19H21NO4 Yes 328.15448 [M + H]+ 0.46 Proposed No 
10 1.87 Boldine Aporphine alkaloid C19H21NO4 Yes 328.15447 [M + H]+ 0.43 GNPS No 
11 1.96 Isoboldine Aporphine alkaloid C19H21NO4 Yes 328.15440 [M + H]+ 0.21 GNPS Yes 
12 2.05 Corytuberine Aporphine alkaloid C19H21NO4 Yes 328.15438 [M + H]+ 0.15 GNPS No 
13 2.00 Lauroscholtzine Aporphine alkaloid C20H23NO4 Yes 342.17014 [M + H]+ 0.47 GNPS Yes 
14 2.07 Reticuline Benzylisoquinoline alkaloid C19H23NO4 Yes 330.16918 [M + H]+ −2.42 MoNA Yes 
15 2.19 Armepavine Benzylisoquinoline alkaloid C19H23NO3 Yes 314.17505 [M + H]+ −0.06 GNPS No 
16 1.93 Zenkerine Noraporphine alkaloid C18H19NO3 Yes 298.14367 [M + H]+ −0.34 GNPS No 
17 2.08 Tuduranine Noraporphine alkaloid C18H19NO3 No 298.14343 [M + H]+ −1.14 Proposed No 
18 2.08 Diospirifoline Aporphine alkaloid C19H19NO4 Yes 326.13859 [M + H]+ −0.28 Proposed No 
19 2.27 Thaliporphine Aporphine alkaloid C20H23NO4 Yes 342.16985 [M + H]+ −0.38 GNPS No 
20 2.43 Predicentrine Aporphine alkaloid C20H23NO4 Yes 342.17007 [M + H]+ 0.26 MoNA No 
21 2.47 Nuciferine Aporphine alkaloid C19H21NO2 No 296.16469 [M + H]+ 0.61 GNPS No 
22 2.54 Corydine Aporphine alkaloid C20H23NO4 Yes 342.17042 [M + H]+ 1.29 GNPS Yes 
23 2.50 Domesticine Aporphine alkaloid C19H19NO4 Yes 326.13834 [M + H]+ −1.04 GNPS No 
24 2.98 Dehydrodicentrine Aporphine alkaloid C20H21NO4 Yes 338.13891 [M + H]+ 0.68 Proposed No 
25 2.46 Norisocorydine Noraporphine alkaloid C19H21NO4 Yes 328.15421 [M + H]+ −0.37 GNPS No 
26 2.56 Laurotetanine Noraporphine alkaloid C19H21NO4 Yes 328.15429 [M + H]+ −0.12 GNPS No 
27 2.79 Nordicentrine Noraporphine alkaloid C19H19NO4 Yes 326.13862 [M + H]+ −0.18 GNPS No 
28 3.01 Nornantenine Noraporphine alkaloid C19H19NO4 Yes 326.13864 [M + H]+ −0.12 GNPS Yes 
29 3.08 Nornuciferine Noraporphine alkaloid C18H19NO2 Yes 282.14870 [M + H]+ −0.57 GNPS No 
30 2.69 Lirinidine Aporphine alkaloid C18H19NO2 Yes 282.14850 [M + H]+ −1.28 GNPS Yes 
31 2.92 Glaucine Aporphine alkaloid C21H25NO4 Yes 356.18513 [M + H]+ −1.40 GNPS Yes 
32 3.07 Roemerine Aporphine alkaloid C18H17NO2 Yes 280.13274 [M + H]+ −1.68 GNPS Yes 
33 2.87 Nantenine Aporphine alkaloid C20H21NO4 Yes 340.15406 [M + H]+ −0.79 MoNA No 
34 3.07 Dicentrine Aporphine alkaloid C20H21NO4 Yes 340.15426 [M + H]+ −0.21 GNPS No 
35 3.15 Dehydronuciferine Aporphine alkaloid C19H19NO2 No 294.14903 [M + H]+ 0.58 Proposed No 
36 3.31 Dicentrinone Oxoaporphine alkaloid C19H13NO5 Yes 336.08626 [M + H]+ −0.86 GNPS No 
37 3.52 Leucoxylonine Aporphine alkaloid C22H25NO6 Yes 400.17563 [M + H]+ 0.42 Proposed No 
38 3.05 Stephenanthrine Phenanthrene alkaloid C19H19NO2 No 294.14881 [M + H]+ −0.17 Proposed No 
39 3.19 Argentinine Phenanthrene alkaloid C19H21NO2 Yes 296.16515 [M + H]+ 2.16 GNPS Yes 
40 3.66 Thalicthuberine Phenanthrene alkaloid C21H23NO4 Yes 354.16966 [M + H]+ −0.90 GNPS No 
41 3.86 Discretamine Protoberberine alkaloids C19H21NO4 Yes 328.15342 [M + H]+ −2.77 GNPS No 
42 3.27 Sesamin Lignan C20H18O6 Yes 355.11784 [M + H]+ 0.65 MoNA No 
43 5.38 Ocophyllol B Neolignan C21H26O5 Yes 359.18565 [M + H]+ 0.97 Proposed No 
44 5.45 Eusiderin Neolignan C22H26O6 Yes 387.17956 [M + H]+ −1.70 Proposed No 
45 5.99 Licarin B Neolignan C20H20O4 Yes 325.14306 [M + H]+ −1.17 Proposed No 
46 6.30 Licarin A Neolignan C20H22O4 Yes 327.15865 [M + H]+ −1.34 MoNA No 
47 6.34 Armenin B Neolignan C21H24O6 Yes 373.16390 [M + H]+ −1.77 Proposed No 
48 0.56 Quinic acid Cyclic polyol C7H12O6 Yes 191.05433 [M-H]− −9.32 MoNA No 
49 1.75 Taxifolin Flavanonol C15H12O7 Yes 303.04983 [M-H]− −3.96 GNPS No 
50 2.07 Catechin/ 

Epicatechin 
Flavonol C15H14O6 Yes 289.07091 [M-H]− −2.94 MoNA No 

51 2.40 Isoquercitrin Glycosylated flavone C21H20O12 Yes 463.08689 [M-H]− −2.83 MoNA Yes 
52 2.42 Vitexin-2’-O-

rhamnoside 
Glycosylated flavone C27H30O14 Yes 577.15701 [M-H]− 1.26 GNPS No 

53 2.46 Rutin Glycosylated flavone C27H30O16 No 609.14699 [M-H]− 1.44 GNPS Yes 

(Continued) 
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Table 1: Continued 

ID Rt 
(min) 

Putative metabolite Metabolite class MF Ocotea 
DB 

Observed 
m/z 

Adduct Error 
(ppm) 

Spectral 
references 

Automatic 
GNPS 
annotation 

54 2.54 Quercimeritrin Glycosylated flavone C21H20O12 Yes 463.08762 [M-H]− −1.25 Proposed No 
55 2.54 Vitexin Glycosylated flavone C21H20O10 Yes 431.09731 [M-H]− −2.46 GNPS No 
56 2.66 Quercitrin Glycosylated flavone C21H20O11 Yes 447.09299 [M-H]− −0.67 GNPS Yes 
57 2.73 Reynoutrin Glycosylated flavone C20H18O11 Yes 433.07686 [M-H]− −1.71 MoNA Yes 
58 2.74 Astragalin Glycosylated flavone C21H20O11 Yes 447.09298 [M-H]− −0.69 MoNA No 
59 2.74 Apigenin-7-O-

rutinoside 
Glycosylated flavone C27H30O14 Yes 577.15675 [M-H]− 0.81 MoNA Yes 

60 2.85 Schaftoside/ 
Isoschaftoside 

Glycosylated flavone C26H28O14 Yes 563.14164 [M-H]− 1.79 GNPS Yes 

61 3.15 Afzelin Glycosylated flavone C21H20O10 Yes 431.09706 [M-H]− −3.04 MoNA No 
62 4.46 Kaempferol 

3-4′′-p-coumaryl-
rhamnoside 

Glycosylated flavone C30H26O13 Yes 577.13474 [M-H]− −0.71 Proposed No 

63 3.57 Quercetin Flavonol C15H10O7 Yes 301.03286 [M-H]− −8.37 MoNA No 
64 4.04 Apigenin Glycosylated flavone C15H10O5 Yes 269.04407 [M-H]− −5.32 GNPS No 
65 4.10 Kaempferol Flavonol C15H10O6 Yes 285.03873 [M-H]− −6.07 GNPS No 
66 5.46 

/ 
5.55 

Kaempferol 3-(2′′,4′′-
di-(E)-p-coumaryl-
rhamnoside)/ 
Kaempferol 3-(3′′,4′′-
di-(E)-p-coumaryl-
rhamnoside) 

Glycosylated flavone C39H32O14 Yes 723.17282 [M-H]− 1.23 GNPS Yes 

The IDs with the respective ion fragments observed on MSE spectra are detailed in Table S1. Chemical structures are provided in Figures S8 –S12 . Spectral 
matching was done manually for all IDs using online MS reference spectra libraries (MoNA and GNPS). The proposed fragmentations were based on the 
literature with diagnostic ions for the annotated metabolite classes [23 –27 ]. 

(32.03 Da) occurred due to adjacent hydroxyl and methoxy groups 
in aporphine rings followed by neutral CO loss (27.99 Da). Frag-
mentation patterns of some of the less common alkaloids found 
in Ocotea spp., including benzylisoquinolines, morphinandienones 
and phenanthrenes, are also depicted in Figure 5. This reveals 
some shared and distinctive fragmentation patterns among the 
diversity of the annotated alkaloids, as explained in ST-1. Frag-
mentation proposals were based on chemical knowledge and 
supported by the literature [23–27]. 

Flavonoids and lignoids displayed characteristic neutral losses 
and fragment ions as well (Figure 6). The fragmentation of lignoids 
was evidenced by neutral losses of methyl (14.01 Da), methoxy 
(32.03 Da), retro-Diels-Alder reactions and aromatic ring cleav-
ages. These fragmentations formed diagnostic ions that allowed 
the differentiation of bicyclo neolignans and benzofuran lignoids. 
For flavonoids, fragmentation predominantly involved glycosidic 
bond cleavages and losses of saccharide units. These included 
losses of pentoses (132.04 Da), deoxyhexoses (146.05 Da), hexoses 
(162.05 Da), glucuronic acids (176.03 Da) and rutinoses (308.09 Da), 
giving characteristic product ions. These neutral losses provided 
clues to the types of glycosylation present on the flavonoid scaf-
folds. Key diagnostic ions for flavonoid aglycones allowed dif-
ferentiation between subclasses such as apigenin, quercetin and 
kaempferol. Overall, these characteristic fragmentation patterns 
allowed differentiation between the main flavonoid subclasses 
present in Ocotea species (ST-1). 

FBMN 
Regarding the FBMN jobs with GNPS, positive mode analysis 
required ∼5 h, whereas the negative mode took ∼6 h.  These  
analyses resulted in the generation of highly complex metabolic 
networks (Figures S6 and S7). Besides overall complexity, MN 
revealed intricate cluster families in the metabolome of Ocotea 
spp., which could be individually analyzed to get deeper 

information. In addition, to extract more nuanced insights, LC-
HRMS-DIA/MSE data were reprocessed with higher amplitude 
cutoffs (e.g. 50 000 counts). The FBMN jobs from both datasets 
required less than 15 min to finish. The simplified MNs generated 
from the reprocessed data aided in the visualization and 
identification of key Ocotea spp. molecular families (Figure 8) and  
actinobacterial MNs (Figure 9). 

Spectra were queried against GNPS libraries related to our 
dataset (e.g. IQAMDB and NIH NPs for positive and negative mode, 
respectively) and a complete list of matches is listed in Tables 1 
and S1 and online at the Zenodo open digital library (https:// 
zenodo.org/records/10383866 ). The FBMN analysis revealed 
distinct families of aporphine and benzylisoquinoline alka-
loids (positive mode), alongside predominately O-glycosylated 
flavonoids (negative mode) across the Ocotea spp. ( Figure 8). The 
pie charts illustrate relative metabolite abundance across 60 
Ocotea species based on MS1 precursor ion areas. Visual inspection 
of a positive mode alkaloid cluster shows 3-hydroxynornuciferine 
as highly abundant but specific to only a few Ocotea species, while 
glaucine to only a few others. Reticuline appears conserved across 
most Ocotea spp., suggesting a potential genus chemomarker. N-
methylcoclaurine also arises broadly present, but with reduced 
abundance in this cluster family. 

All of the spectral matches represented were thoroughly 
inspected to check their annotation and spectral similarity 
accuracy. Regarding the MN in negative mode, the high-
lighted family of glycosylated flavonoids is demonstrated, with 
the main metabolites across the highlighted cluster family 
including quercetin-3-O-rhamnoside (quercitrin), quercetin-
3-O-galactoside (quercimetrin), quercetin-3-D-xyloside (rey-
noutrin), kaempferol-3-O-rhamnoside (afzelin), kaempferol-3-
O-glucoside (astragalin) and kaempferol-3-O-arabinoside. The 
array of quercetin and kaempferol glycosides shows widespread 
distribution across the Ocotea spp. dataset. The broad interspecies
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Figure 3. LC-HRMS-DIA/MSE metabolic fingerprints displayed as base peak ions (BPIs) showing the overlapped QC replicates (pool of 60 Ocotea spp. 
extracts) and overlapped individual chromatograms. (A) The overlapped metabolic fingerprint of Ocotea species in positive ionization mode, including 
the amino acid derivative 4-hydroxy-N-methylproline (1), the alkaloids, flavinantine (9), isoboldine (11), leucoxylonine (37), thalicthuberine (40), as well 
as the lignoids ocophyllol B (43), licarin B (45) and armenin B (47). (B) Pooled, overlapped QC samples, highlighting the blank region. Positive mode is 
displayed in red and negative in green. Peaks that are found in common among blanks are located after 7 min. (C) The overlapped metabolic fingerprint 
of Ocotea species in negative ionization mode, and representative annotation of some compounds, such as quinic acid (48) and the flavonoids apigenin-
7-O-rutinoside (59), afzelin (61) and kaempferol 3-(2′′,4′′-di-(E)-p-coumaryl-rhamnoside (66). 

conservation of these flavonoid metabolites suggests the 
presence of essential, shared biosynthetic pathways within the 
Ocotea genus. 

DISCUSSION 
A core challenge in omics fields, including metabolomics, is 
the conversion and processing of DIA data (e.g. MSE) compared  
to traditional DDA workflows. In DDA, preselected precursors 
are fragmented, enabling straightforward data conversion and 
processing by most open tools. However, DDA induces significant 
losses in spectral data coverage, varying with the sensitivity 
of the instrument and, in relation, the cycle time of the 
method, because it selects only ions above a certain cut-off 
area or intensity for fragmentation [5, 28]. In contrast, MSE 

methods fragment all ions without any previous precursor ion 
selection, generating complex but unbiased spectra with a more 
complete metabolomic data coverage [7]. The lack of predefined 
precursors in MSE means that fragment–precursor relationships 
must be reconstructed post-acquisition through computational 

deconvolution approaches, which can be performed using 
different algorithms [5–7, 29]. This is more challenging compared 
to the inherent precursor-to-fragment associations made with 
DDA methods. Herein, we present an integrative strategy to 
leverage MSE data in the community standard .mzML format 
using only freely available software and platforms. This study 
demonstrates the power of MSE with accessible tools while 
highlighting current, ongoing challenges in data conversion, 
processing and interpretation. 

This integrated pipeline provides an efficient and customizable 
solution for extracting the most biological information from MSE 

data. To date, this is the first mention of the Waters2mzML in 
an applicability case, which is a recently introduced tool specif-
ically designed to address the challenges associated with con-
verting and centroiding Waters MSE data, without the need to 
use vendor software such as UNIFI, Symphony or Progenesis QI. 
Waters2mzML is a simple tool that ensures compatibility and 
offers independence to convert raw Waters MSE data into a more 
widely used format. This open tool can correctly reassign MS2-
level data to MSE MS/MS scans. Therefore, it is now possible to
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Figure 4. Main fragmentation pattern of proaporphine, noraporphine and aporphine alkaloids, along with their key diagnostic ions. Representative 
examples are demonstrated: proaporphines: 3—glaziovine. Norapomorphines: 6—laurelliptine and aporphines: 10—boldine. 

freely generate standard and functional .mzML spectra from MSE 

data for further integrated downstream metabolomics analyses. 
Moreover, this pipeline includes the ability to generate a cus-

tom, ‘in-house’ database through a KNIME workflow, enhancing 
its utility. This database integration into LC-HRMS- DIA/MSE data 

processing significantly improves metabolite annotation of MNs 
when using MZmine and MS-DIAL. In our case studies, our focus 
was to enhance the annotation of metabolites specifically from 
Ocotea plants and marine actinobacteria datasets. The creation 
and incorporation of OcoteaDB and ActinomarineDB provided a

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/2/bbae013/7601763 by guest on 08 February 2024



Integrative open workflow | 9 

Figure 5. Main fragmentation pattern of benzylisoquinoline, phenanthrene and morphinan alkaloids, along with their key diagnostic ions. Representative 
examples are demonstrated: Benzylisoquinoline: 14—reticuline. Morphinandienone: 9—flavinantine. Phenanthrene: 38—stephenanthrine. 

tailored metabolite reference library to complement the capabil-
ities of the open-source software tools. This pipeline has demon-
strated efficacy and accuracy, enabling streamlined annotations 
at confidence levels 2 and 3 according to Metabolomics Standards 
Initiative (MSI) guidelines [ 30, 31]. 

Regarding data processing, the export functionality of MS-
DIAL allows DIA data to be cosine matched with high-quality 
spectral libraries on the GNPS platform, also allowing integration 
with any GNPS tools for enhanced data interpretation, including 
FBMN, which was used in this workflow. It also allows other GNPS
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Figure 6. Main fragmentation pattern of lignoids and their key diagnostic ions. Representative examples are demonstrated: Lignoids: 43—ocophyllol B 
and 46—licarin A. 

analyses, such as MS2LDA, Network Annotation Propagation 
(NAP) and MolNetEnhancer, which are already well-implemented 
for DDA data in the GNPS platform [ 32–34]. MS-DIAL software 
therefore enables the full processing of MSE spectra with correct 

GNPS export in a generic file format (.mgf). Importantly, processed 
data from MS-DIAL can be employed for spectral similarity 
searches through a range of different algorithms and tools. 
The strength of MS-DIAL lies in its robust algorithm, MS2dec,
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Figure 7. Main fragmentation pattern of flavonoids and their key diagnostic ions. Representative examples are demonstrated: Glycosylated apigenin: 
51—vitexin. Glycosylated quercetin: 54—rutin. Glycosylated kaempferol: 64—afzelin. 

which successfully deconvolutes precursor ions and reassociates 
precursor–fragment links and whose effectiveness has been 
widely proven [ 14, 19, 32, 33]. 

In contrast, MZmine 3 is a powerful software for processing 
and analyzing DDA data, while effectively handling DIA data 

and integrating with GNPS are still ongoing challenges. The dis-
sociation of MS1–MS2 scans in DIA data remains a significant 
impediment for current MZmine 3. Full DIA-enabled algorithms 
within MZmine 3 are still in active development; nonetheless, the 
latest MZmine 3 can visualize DIA scans chronologically, enabling
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Figure 8. Molecular families of aporphine and benzylisoquinoline alkaloids as well as the glycosylated flavonoid cluster families derived from the FBMN. 
Different alkaloids and flavonoids were annotated with levels 2 and 3 of confidence using GNPS and MoNA spectral matches, and the ‘in-house’ OcoteaDB. 
ESI+ demonstrates representative reticuline alkaloid MSE spectra and fragmentation product ions. ESI−—Clustering of predominantly O-glycosylated 
flavonoids identified across Ocotea spp. and respective aglycones. Each node represents an MSE-acquired mass spectrum, and the edges connecting them 
show MS/MS fragmentation similarity (cosine > 0.6). The pie charts show the relative abundance of each Ocotea plant species (n = 60). In MS1 scans, node 
diameters are related to the sum of peak regions of the precursor ion in both positive (upper) and negative (lower) modes of ionization. 
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Figure 9. Molecular families of the actinobacterial extract derived from the FBMN at high and low concentrations of spiked chemical authentic 
standards. Different chemical standards were annotated with level 2 confidence using GNPS spectral matches, including azithromycin, tetracycline 
and doxycycline. Each node represents an MSE-acquired mass spectrum, and the edges connecting them show MS/MS fragmentation similarity 
(cosine > 0.6). The pie charts show the relative abundance of each sample (AE-H—actinobacterial extract spiked with a high concentration of standards, 
AE-L—actinobacterial extract spiked with a low concentration of standards, STD-H—chemical standards at high concentration and STD-H—chemical 
standards at low concentration). In MS1 scans, node diameters are related to the sum of the peak regions of the precursor ion in positive ionization mode. 
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manual inspection of raw chromatograms and spectra, which was 
previously only possible with vendor-provided software. While the 
integration of DIA algorithms within MZmine 3 remains a work in 
progress, it has emerged as a well-known ecosystem for open MS 
data processing [11, 18]. 

Even though MZmine 3 could not export processed DIA data 
to GNPS, it was utilized as the software platform in this pipeline 
to visualize the metabolic fingerprints of the pooled QC and 
crude extract samples, as well as to perform accurate level 3 
annotation (Figure 3), providing an integrative MSE data analysis. 
The flexibility in setting up parameters is particularly beneficial 
for the sample alignment step, allowing researchers to make 
modifications and visualize new results without the need to 
reprocess previous steps, as required in MS-DIAL. The utilization 
of MZmine 3 therefore enabled us to generate precise metabolic 
fingerprint images of the crude extracts from both dataset cases. 
Manual annotation of metabolites matching the ‘in-house’ DBs 
and online spectral libraries, such as the MoNA spectra database, 
was also incorporated for increased confidence in the annotation 
of matched metabolites. 

The great advantage of this integrated pipeline is the ability 
to reliably process the entirety of MSE data, providing optimal 
visualization of MS1 and MS2 raw and processed data within 
a user-friendly and open software pipeline environment. Even 
though both programs used here present limitations, we tried to 
benefit from their advantages to help overcome the bottlenecks 
of MSE data analysis with MN implementation. The extensive 
development of MZmine 3 is evident through its active GitHub 
community and frequent updates, showcasing its commitment 
to continuous improvement. This dynamic environment fosters 
innovation, and DIA implementation tools seem to be on the hori-
zon. In contrast, MS-DIAL has seen slower recent development, 
less frequent updates and fewer data processing features and 
parameters, indicating the need for further improvements. How-
ever, the limitations of MS-DIAL do not diminish its effectiveness 
in performing the necessary tasks for DIA data analysis. 

This workflow offers guidance to the community for handling 
LC-HRMS-DIA/MSE (and AIF), for which standardized protocols 
were previously lacking. Future software developments (e.g. DIA 
algorithms in MZmine 3) will build upon, rather than invalidate, 
the core foundations established here, as we have delineated key 
data handling steps for DIA workflow implementation, from data 
conversion to parameter tuning (see Supplementary Section). 
Overall, this provides an open-source framework to empower 
DIA-AIF/MSE users with customizable workflows for enhanced 
metabolomics analyses. 

Specific parameter adjustments were performed to ensure 
reliable results for our MSE data during FBMN jobs, consider-
ing that most MN examples available are based on DDA data. 
Given the larger size of the dataset and the complexity of MSE, 
we carefully modified search parameters such as cosine score, 
number of matched fragment ions and network organization 
parameters including TopK and maximum connected component 
size. It is crucial to fine-tune these parameters due to the lack 
of MS2 specificity in MSE data, where fragment ions originate 
from all co-eluted precursors (see Methods section). Thus, the 
TopK value directly influences the number of edges retained 
in the network and should be considered, as it influences the 
connections between nodes and the overall structure of the MN. 
We highlight the importance of considering appropriate values for 
TopK in the investigation of molecular families of any DIA or MSE 

data. In addition, DDA is generally less effective compared to DIA 
for low-abundance compounds [35]. Lowering cosine parameters 

is also applicable to DIA data since the search criteria need to 
be less restrictive for matches to occur. The association of these 
strategies provides a solid foundation for future improvements 
in metabolite identification and cluster analysis of DIA, AIF or 
MSE data. 

Furthermore, we recommend using more specific metabolite 
libraries in GNPS—like IQAMDB (IsoQuinoline and Annonaceous 
Metabolites Database) and NIH natural products—for broad 
metabolite coverage. DB-based annotation was consolidated with 
FBMN through feature metrics. For optimal annotation accuracy, 
curated, phylogeny-relevant libraries are preferable over com-
prehensive public counterparts. Targeted matching of detected 
metabolites to expected biosynthetic origins avoids erroneous 
assignments. Overall, harnessing biosynthetic knowledge through 
tailored libraries boosts reliability by connecting metabolites 
specifically to validated biological sources [36]. 

In this study, we rigorously demonstrate the utility and robust-
ness of the DIA-IntOpenStream pipeline through its application to 
two distinct and carefully selected datasets, each chosen to show-
case different aspects and capabilities of the workflow. In addi-
tion, the gas-phase fragmentation reactions were proposed for the 
different NP classes. The selection of dataset 1 was driven by its 
potential impact and applicability. Although, Ocotea spp. hold sig-
nificant ethnobotanical importance, display promising medicinal 
potential and face taxonomic and ecological challenges. In addi-
tion, only a limited number of species within the genus have been 
chemically characterized. Given the high therapeutic potential of 
the Ocotea genus for drug discovery, there is an urgent need for 
NP chemical studies to support the bioprospecting use of Ocotea 
species, particularly those endangered in Brazil. Research topics 
focusing on the Ocotea genus have importance by themselves, and 
thus, this dataset also adds value and purpose to our study. 

Dataset 2, an actinobacterial extract of MS public data spiked in 
high and low concentrations with 20 different chemical standards, 
was specifically chosen for a detailed comparative analysis with 
existing methods. The addition of known standards allows robust 
validation of the pipeline’s annotation accuracy and efficiency. 
By using an actinobacterial extract, we also demonstrate the 
workflow’s applicability to microbial metabolomics, an area of 
significant interest due to the role of microorganisms in envi-
ronmental processes and human health. A comparative analysis 
with existing methods that have used this dataset highlights 
the advancements and improvements that DIA-IntOpenStream 
offers in terms of data processing efficiency, annotation accuracy 
and the ability to handle complex NP matrices. Several high-
confidence annotations for both datasets were achieved. The 
results include a significant number of chemical annotations with 
level 2 confidence according to MSI guidelines [30, 31, 37, 38], 
with spectra having matched comprehensive spectral libraries of 
standard compounds (GNPS and MoNA). 

Dataset 2, previously examined in a high-quality study [17], 

involved an advanced LC-HRMS analysis of complex NP mixtures. 
Among the strategies explored was the use of MS data acquired by 
DIA, specifically MSE. In that study, vendor software was used for 
data analysis, which is an extremely commonly used approach 
at the time of this study. We re-analyzed their DIA data with 
the IntOpenStream pipeline, and the obtained results reinforced 
the pipeline’s effectiveness. It successfully allowed the annota-
tion of many authentic chemical standards in the complex NP 
microbial sources, a key indicator of its reliability. The initial 
study successfully identified 18 high-abundance and 16 low-
abundance standards. In comparison, our pipeline yielded similar 
results, with a minimal difference of only two and three standards
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fewer at each concentration level, respectively (Figure S15 and 
Table S3). 

On the other hand, our pipeline demonstrated enhanced 
efficacy regarding 5 main aspects. (i) FBMN matched seven 
authentic standards with annotation confidence level 2 (Table S3), 
surpassing the two standard matches in the original study that 
used classical MN. (ii) We obtained an additional seven anno-
tations with confidence level 2 for the original actinobacterial 
extract by utilizing the built-in ActinomarineDB and manual data 
inspection (Figures S16–S19 and Table S4). (iii) FBMN analysis 
revealed various GNPS-matched standards and related com-
pounds in the actinobacterial extract, including the annotation 
of rosamicin in the azithromycin standard cluster family. (iv) 
We uniquely detected important genus-specific compounds 
such as fluostatin A, kinobscurinone and γ -actinorhodin in the 
actinobacterial extract (Figures 9 and S14). (v) Lastly, our pipeline 
annotated 450 features at confidence level 3 (details published 
online at https://zenodo.org/records/10383866 ). As such, our 
approach not only aligns with existing literature data but also 
provides complementary insights. The robust comparison against 
a dataset of established benchmarks highlights the reliability and 
validity of DIA-IntOpenStream. Our commitment is to offer a 
freely accessible, robust tool for the metabolomics community 
to provide independence from the advantages of proprietary 
software. 

As a final comment, the metabolite annotation of constitu-
tional isomers, as observed in the Ocotea dataset, can be facilitated 
using standard compounds for combined MS/MS experiments. 
However, the stereochemistry of compounds with a high degree 
of structural similarity demands additional characterization to 
confirm chemical identity, as in the case of the aporphines boldine 
and isoboldine, which exhibit the same parent ion and prod-
uct ions (Figure 4 and Table 1). The ratios and proportions of 
formed ion fragments differ and might help to elucidate isomers 
and epimers, at standardized MS conditions, for reliable spectral 
matching. Implementation of our pipeline enabled us to state 
the chemical diversity of the studied Ocotea species as mainly 
alkaloid producers. Multiple aporphine alkaloids bearing various 
substituent patterns were annotated with level 2 of confidence. 
A range of different glycoside flavonoids were annotated as well. 
Lastly, a wide variety of lignoids were annotated with level 3 con-
fidence (available online at https://zenodo.org/records/10383866 ). 
It is worth mentioning that the first report on the evaluation of the 
chemical composition of several of these endemic Ocotea spp. in 
Brazil was published in 2023 [ 39]. 

Several metabolites not previously reported in the Ocotea genus 
were annotated at level 2 confidence. For instance, dehydronu-
ciferine (24) annotated here in some Ocotea extracts has only 
been documented in other plants like the Nymphaeaceae family, 
encountered in the sacred lotus Nelumbo nucifera. NP research on 
the N. nucifera allowed authors to isolate the dehydronuciferine 
together with other aporphines such as the nuciferine (21) and 
nornuciferine (29), which are common compounds found in the 
Ocotea genus and also reported by us in the present investigation. 
Also, the alkaloid leucoxylonine (37) is reported in the literature as 
produced only by two species of the Ocotea genus, including Ocotea 
leucoxylon and Ocotea minarum [40, 41]. In this work, it was success-
fully annotated in other species with high-intensity peak areas, 
for the first time, in the VZ, VA and PU Ocotea extracts (Table S2). 
In this manner, the present research is also filling this gap and 
might contribute with chemical characterization data to further 
taxonomic classification studies associating chemosystematics 
strategies. 

Using a custom database of metabolites previously isolated 
from the same biological source greatly aids annotation con-
fidence. Large databases can complement this approach but 
require careful analysis to avoid improbable assignments. Our ‘in-
house’ DBs built in KNIME enabled high-confidence annotations 
since matched compounds were previously isolated in the tar-
geted genera of the studies. For study cases of biological samples 
such as urine and blood, a range of other databases are available 
in HMDB (https://hmdb.ca/ ) as well as other online repositories. In 
addition, automated annotation with a higher level of confidence 
can be also performed in MS-DIAL with metabolomics MSP 
spectral kits or by directly exporting data to the GNPS platform 
and selecting available spectral libraries. Critically important to 
perform quality analyses, manual and automated annotations 
were largely complementary. For example, dataset 1 contained 
only 18 common level 2 annotations, indicating both strategies 
are relevant and that combining them can be highly effective. 

In conclusion, all these ongoing challenges around LC-
HRMS/DIA analysis have motivated us to build this pipeline. We 
believe it represents an advancement in the field, providing an 
accessible and efficient workflow for handling complex MSE data 
and conducting MN analyses. It can globally aid bioprospecting 
NP, as we did by unlocking the chemical diversity of plants 
and bacterial marine extracts. Also, the inclusion of known 
standards in dataset 2 allowed robust validation of the pipeline’s 
annotation accuracy and efficiency. The use of both datasets 
highlighted DIA-IntOpenStream’s versatility and potential in 
diverse metabolomics studies. By prioritizing accessibility and 
transparency, our pipeline ensures that all aspects of data 
analysis, including processing steps, parameters, software 
versions and computational setup, are precisely documented 
and available to the scientific community. This commitment 
to reproducibility fosters scientific progress and collaboration. 
Future works may integrate other valuable open data pre-
processing, MS/MS annotation and in silico fragmentation tools 
into this pipeline, such as the TidyMS python library, SIRIUS 
software and MS-FINDER, respectively [42–44]. Overall, this 
pipeline embodies scientific rigor, and its implementation holds 
promise for speeding up chemical discoveries, ultimately guiding 
researchers toward a more collaborative and open environment 
for research. 

METHODS 
Solvents, plant material and crude extract 
preparation 
Details regarding the solvents used and sample preparation meth-
ods are provided in the Supplementary Material SM-1. Informa-
tion on solvent sources, purity levels, vegetal material, maceration 
extraction conditions and sample-handling procedures are all 
included. 

Data acquisition and sample analysis 
Chromatographic analysis was performed on an ultra-performance 
liquid chromatography–quadrupole time-of-flight tandem MS 
instrument (Xevo qTOF MS, Waters Corp., Milford, USA). Details 
concerning the QC preparation, chromatographic column, 
method details and mobile phase system information are 
described in Supplementary Material SM-2. The electrospray 
ionization (ESI) source operated in both positive and negative ion 
modes to capture a comprehensive range of analytes. MSE, a  type  
of DIA analysis, was conducted using MassLynx™ (v4.2; Waters
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Corp., Milford, USA). The mass spectrometer and MSE acquisition 
parameters are fully detailed in Supplementary Material SM-2. 

Public samples dataset 
We validated our pipeline using a publicly available LC-HRMS-
DIA/MSE dataset of a marine actinobacteria extract. This dataset, 
as described in the publication by Carnevale et al., was enriched 
with a pool of 20 authentic standards [17]. The chosen standards 
encompass a wide range of antimicrobial and chemotherapeu-
tic agents, along with naturally occurring compounds, thereby 
providing a diverse chemical profile suitable for comprehensive 
analysis. The dataset was obtained from the MassIVE repository 
(MSV000088316) and is accessible through the Global Natural 
Products Social Molecular Networking (GNPS) platform. 

Data processing and annotation workflow 
The KNIME workflow and subsequent open software in the 
pipeline were executed on a Windows 11 desktop computer with 
a 12-core (8 used) 64-bit Intel Core i7-12700—2.10 GHz processor 
with 32 GB of RAM. The GPU consisted of an NVIDIA T1000 8GB. 

KNIME in-house database workflow 
To perform the experiments, we have developed a robust 
workflow to establish an integrated ‘in-house’ database within 
Mzmine and MS-DIAL data processing software using the KNIME 
(University of Konstanz, Zurich, Switzerland, version 4.6.5). 
KNIME (www.knime.org ) is an open-source workflow system 
with a graphical user interface built on a set of nodes known as 
‘extensions’ that process data and transmit it via connections 
between those nodes. Thus KNIME provides a simple visual 
workbench that allows scientists to build and visualize complex 
workflows [ 45, 46]. The workflow is online and is publicly available 
to use (https://hub.knime.com/-/spaces/-/&#x007E;8bZEbbknV8 
tVptea/current-state/ ). Details regarding our custom ‘in-house’ 
DB are provided in the SM-3. The ‘in-house’ database allows level 
3 annotation following the guidelines of the MSI [ 30, 31]. However, 
it holds more confidence because the ‘in-house’ DB supports 
fast annotation of previous metabolites previously isolated in the 
family or genus of the study. 

MS data conversion 
To ensure compatibility, accessibility and comparability, the 
raw Waters MSE data from both independent datasets were 
converted to the widely used .mzML format using the recently 
developed open-source tool Waters2mzML 1.2.0, available on 
GitHub (https://github.com/AnP311/Waters2mzML ) (SM-3). The 
generated .mzML files can be readily processed using Mzmine 3 
and MS-DIAL software for further analyses and interpretation. 

Mzmine 3 data processing and analysis 
The raw data containing peak area and Rt–m/z pairs of 71 
Ocotea samples (60 Ocotea spp. sample extracts, four QCs, four 
blanks and three VI sample extracts [replicates]) and 17 samples 
from actinobacterial extract (replicates and blanks), previously 
converted to .mzML format, were imported into MZmine 3.4.27 
(https://mzmine.github.io/ ; MZmine Development Team). One QC 
and one blank sample replicate were excluded from processing 
due to higher shifts in the Rt compared to other replicates. The 
detected peaks were deconvoluted, isotopes were eliminated, 
identical peaks in the different chromatograms were aligned, the 
remaining gaps were filled, duplicated features were filtered and 
the blank chromatograms were subtracted. Then, the features 
were annotated according to their monoisotopic masses. Data 

from each ionization mode were processed separately. The data 
processing parameters are fully detailed in the Supplementary 
material SM-4. 

The treated MS data was then exported in .xlxs format. The 
Mass Bank of North America (MoNA) (https://mona.fiehnlab. 
ucdavis.edu/ ) was used for manual spectral comparisons and 
fragment MS data matches. These manual annotations were 
listed as level 2 according to the current standards initiative [ 31, 
37, 38, 47]. The chosen modules and algorithms of processing 
were the standard ones, although this software offers an array 
of different modern tools that can be used to improve data 
processing results [6, 11, 18]. 

MS-DIAL data processing and analysis 
The ‘Analysis Base File’ (.abf) format, generated using Reifys Abf 
converter software (https://www.reifycs.com/AbfConverter ), is a 
traditional data format for MS-DIAL MSE data processing aimed at 
MN implementation. However, to ensure maximum compatibility 
with other software, we chose a more universal approach by 
converting the data into .mzML format, enabling simultaneous 
MZmine and MS-DIAL usage and MS data comparison. 

The converted .mzML data were successfully loaded into MS-
DIAL version 4.9.2 (http://prime.psc.riken.jp/compms/msdial/ 
main.html ) for data processing, following a procedure similar 
to the one used with MZmine 3. In MS-DIAL, we configured 
the project settings according to our specific data requirements: 
ionization mode (soft ionization; chromatography; conventional 
DIA-all-ions method-AIF), the experiment file (available in 
the Supplementary Material) and data type (i.e. centroid MS1 

and MS/MS data). It is also necessary to process positive and 
negative ion modes data separately. For data processing, the 
parameters are fully detailed in the Supplementary Material 
(SM-5). Subsequently, the data were uploaded to the GNPS server 
using the open FTP tool named WinSCP (https://winscp.net/eng/ 
download.php ). All the other existing parameters not mentioned 
were left at software default. 

Molecular networking and metabolite annotation 
analysis 
Metabolite annotation in our study involved a combination of 
automated and manual approaches (detailed in SM-6). Post-data 
processing is performed by exporting the results from MS-DIAL, 
i.e. ‘MS2 File’ (.mgf), ‘Feature Quantification Table’ (.txt) and the 
metadata to the GNPS (https://gnps.ucsd.edu/ ) environment. The 
metadata file was built in .txt format with the filenames and 
the respective attributes of species, sample type, region/state of 
plant collection and endemic occurrence in Brazil. These files 
are available online on the Zenodo platform (https://zenodo.org/ 
records/10383866 ). FBMN was generated using the respective 
workflow in the GNPS ecosystem [ 48] using FBMN parameters 
described in SM-6. Most of the metabolites were annotated at 
levels 2 and 3 according to MSI levels. All combined FBMN jobs 
with level 3 annotated metabolites are listed in Tables S3 and S4 
and can be found on the Zenodo platform (https://zenodo.org/ 
records/10383866 ). 

Molecular networking visualization and 
interpretation 
The generated networks from GNPS were downloaded and 
visualized using Cytoscape network software (version 3.8.2). The 
metadata-rich GNPS table, when opened in Cytoscape, can be 
exported as a .csv file. This facilitates semi-automated integration 
with the ‘in-house’ annotation. Subsequently, the annotated table
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can be reimported into the software to perform MN investigation 
and analysis. 

Key Points 
• An open, integrated workflow is presented that leverages 

both universal data formats (.mzML) and open-source 
software tools (KNIME, MZmine, MS-DIAL and GNPS) for 
enhanced DIA-MSE data handling. 

• The workflow demonstrated its applicability by charac-
terizing Ocotea crude plant and marine actinobacterial 
extract, revealing the chemical diversity of different nat-
ural product classes. 

• By promoting open science, the pipeline provides a 
framework to advance DIA-MSE data handling, trans-
parency, reproducibility and analysis through integrative 
approaches, overcoming the limitations of commercial 
solutions. 

• We aim to propel the field forward, empowering 
researchers to achieve more accessible MSE data pro-
cessing, with a reliable annotation process, leveraging 
the potential of DIA-MS to drive the community toward 
further improvements. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxford 
journals.org/. 
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Supplementary Figures 

 

Fig. S1 | LC-HRMS-MSE/DIA metabolic fingerprints shown as Base Peak Ion (BPI) chromatograms 

displaying the overlapped quality control (QC) replicates (pooled from 60 Ocotea spp. leaf extracts). The 

QC replicates were acquired in both positive (red) and negative (green) electrospray ionization modes under similar 

conditions. The overlay of the BPI traces for 5 replicate injections demonstrates highly reproducible 

chromatographic and mass spectrometric performance essential for robust comparative metabolomics analysis. 
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Fig. S2 | LC-HRMS-MSE/DIA fingerprints shown as Base Peak Ion (BPI) chromatograms displaying the 

overlapped blank samples from the Ocotea dataset 1. The blank replicates were acquired in both positive (red) 

and negative (green) electrospray ionization modes under identical conditions. The overlay of the BPI traces for 5 

replicate injections demonstrates highly reproducible chromatographic analysis. 
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Fig. S3 | Aligned chromatograms from Ocotea spp. samples, with zoom on the features with m/z 328.154 on 

a 1.45-2.40 min retention time (Rt) window. The overlaid chromatograms exhibit precise retention time 

alignment of the isomeric compounds and high resolution of the close features.  
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Fig. S4 | MS-DIAL alignment result of negative ionization mode from Ocotea dataset. Each dot (circle format) 

represents a particular feature of the processing with the colour pallet from blue to green varying with the intensity, 

where the green ones represent the most intense ions. In detail, the ions at m/z 711.2523 and Rt 3.82.  

 

 

Fig. S5 | MS-DIAL alignment result of positive ionization mode from Ocotea dataset. Each dot (circle format) 

represents a particular feature of the processing with the same variation on the colour pallet. In detail, the ions at 

m/z 328.1546 and Rt 1.98. 
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Fig. S6 | FBMN of positive (red) mode of ionization from Ocotea dataset. Each node on networks represents a 

feature (m/z/ Rt) from MS-DIAL processing connected with a basis on MS/MS spectral similarity. 22.572 nodes 

are shown on positive modes. The amplitude used in the MS-DIAL data processing for visualization of these MN 

was set at 1000. The complexity of our data is illustrated by these networks, showing that complex matrices as 

plant extracts aligned in big datasets (n=60) demand sophisticated tools for reliable processing, visualization and 

interpretation of the results. 
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Fig. S7 | FBMN of negative (green) mode of ionization from Ocotea dataset. Each node on networks represents 

a feature (m/z/ Rt) from MS-DIAL processing connected with a basis on MS/MS spectral similarity. 21.838 nodes 

are shown in negative mode. The amplitude used in the MS-DIAL data processing for visualization of these MN 

was set at 1000. The complexity of our data is illustrated by these networks, showing that complex matrices as 

plant extracts aligned in big datasets (n=60) demand sophisticated tools for reliable processing, visualization and 

interpretation of the results. 
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Fig. S8 | Chemical structures annotated for the Ocotea dataset with level 2 of confidence (ID 1-16). 
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Fig. S9 | Chemical structures annotated for the Ocotea dataset with level 2 of confidence (ID 17-32).
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Fig. S10 | Chemical structures annotated for the Ocotea dataset with level 2 of confidence (ID 33-48).
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 Fig. S11 | Chemical structures annotated for the Ocotea dataset with level 2 of confidence (ID 49-60). 
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Fig. S12 | Chemical structures annotated for the Ocotea dataset with level 2 of confidence (ID 61-66). 
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Fig. S13 | LC-HRMS-MSE/DIA metabolic fingerprints shown as Base Peak Ion (BPI) chromatograms 

displaying in purple the overlapped actinobacterial extract spiked with chemical authentic standards in 

high (purple) and low (orange) concentration. (b) the overlapped blank replicates in the grey colour. The 

actinobacterial extract and blank replicates were acquired only in positive electrospray ionization. The overlay of 

the BPI traces for 6 samples and 5 blank replicate injections demonstrates highly reproducible chromatograms. 
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Fig. S14 | Molecular families derived from the Feature-Based Molecular Networking (FBMN) for the 

Actinobacterial dataset. Several marine NP were annotated with levels 2 and 3 of confidence using GNPS and 

MoNA spectral matches, and in-house ActinomarineDB. Besides, nystatin, oleanolic acid and ursolic acid were 

annotated as chemical standards spiked in the extracts. Pie chart colours refer to node distribution in extracts and 

standard samples. Blue colours represent actinobacterial extracts spiked with high (blue dark) and low (light blue) 

standard concentrations. Red and orange colours represent the pooled chemical standards samples, in high (red) 

and low (orange) concentrations, respectively. Fluostatin A isomers were clustered and automatically annotated as 

fluostatin A from GNPS libraries. Whereas, the coprisamide C, phomin and nikkomycin So(x) were clustered and 

annotated at level 3 of confidence by the monoisotopic mass match with ActinomarineDB. As well fluostatin K 

and spylidone, alongside the roseoflavin, rubrolone, and naphthomevalin MN clusters. The bottom right cluster 

family presented a node related to ten level three annotations from ActinomarineDB, which were annotated as 

quinone derivatives, e.g 8-O-methyltetragomycin, fujianmycin B, hatomarugibin A and B, zoumbericin A, 

brasiliquinone B and homo-dehydrorabelomycin E, rubiginone M, and two others NP not named from our in-

houseDB. *Level 3 of confidence annotations. 
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Fig. S15 | All chemical structures of standards annotated from the dataset 2. 
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Fig. S16 | Chemical structures of metabolites annotated with level 2 of confidence based on ActinomarineDB. 
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Fig. S17 | Main proposed fragmentation pattern of some annotated chemical standards used for dataset 2.  

3a) Azithromycin. 9a) Tetracycline. 10a) Doxycycline. 
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Fig. S18 | Main proposed fragmentation pattern of some level 2 annotated metabolites from the 

ActinomarineDB used for dataset 2. 1b) Fluostatin A. 4b) Rosimicin. 
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Table S1 |   Details of metabolite annotation with level 2 of confidence for the Ocotea dataset.  Putative annotations of metabolites identified by matching 

accurate mass, isotopic pattern, and fragmentation spectra to public databases literature sources and chemical knowledge. Putative name, cLogP, molecular 

formula, observed m/z, adducts, main fragments, database sources, and supporting international identifier (InChIKey) are provided. 

ID Putative metabolite name 
Observed 

m/z 
Adduct MS/MS fragments Reference InChIKey 

1 4-hydroxy-N-methylproline 146.08119 
[M+H]

+ 
82.06643; 100.07568 Proposed FMIPNAUMSPFTHK-UHNVWZDZSA-N 

2 Crotsparine 284.12770 
[M+H]

+ 

118.06763; 146.06143; 152.06110; 165.07108; 

178.07968; 235.0754; 267.1027; 
GNPS LCAZZISCNMBVKG-LBPRGKRZSA-N 

3 Glaziovine 298.14359 
[M+H]

+ 

141.07013; 152.06110; 165.06844; 167.08461; 

178.07695; 194.07216; 235.0754; 267.1027; 
GNPS PNJUPRNTSWJWAX-UHFFFAOYSA-N 

4 N-methylcoclaurine 300.15932 
[M+H]

+ 
103.05380; 107.04881 115.05604; 165.07108; 

194.07501 
GNPS BOKVLBSSPUTWLV-INIZCTEOSA-N 

5 3-hydroxynornuciferine 298.14355 
[M+H]

+ 

152.06110; 165.07108; 177.06862; 178.07695; 

189.06778; 195.07916; 205.06406; 218.07373; 
(281.14987) 

GNPS AOGVVFDNSYRXJL-CYBMUJFWSA-N 

6 Laurelliptine 314.13850 
[M+H]

+ 

151.07413; 237.07719; 238.08591; 255.08789; 

265.07416; 266.08069; 283.08377; 297.09570; 
298.10825 

Proposed HORZNQYQXBFWNZ-UHFFFAOYSA-N 

7 Laurolitsine 314.13853 
[M+H]

+ 

165.06844; 177.06862; 194.07216; 205.06406; 

211.07594; 222.06624 
GNPS KYVJVURXKAZJRK-LBPRGKRZSA-N 

8 Pallidine 328.15444 
[M+H]

+ 

153.06898; 163.08540; 165.06844; 168.05618; 

177.06862; 178.08514; 205.06406; 211.07594; 
227.07082; 239.07147; 251.06995; (297.11334) 

GNPS FBCNBECEGOCMPI-LIRRHRJNSA-N 

9 Flavinantine 328.15448 
[M+H]

+ 
134.05945; 163.06190; 178.08514; 205.06113; 

297.14505 
Proposed GSNZKNRMDZYEAI-AUUYWEPGSA-N 

10 Boldine 328.15447 
[M+H]

+ 

165.07108; 177.06862; 197.07216; 205.06406; 

222.06624; 237.08978; (297.09924) 
GNPS LZJRNLRASBVRRX-ZDUSSCGKSA-N 
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11 Isoboldine 328.15440 
[M+H]

+ 

165.06844; 177.06862; 194.07216; 205.06406; 

222.06624; 237.08978; (297.09924) 
GNPS LINHZVMHXABQLB-ZDUSSCGKSA-N 

12 Corytuberine 328.15438 
[M+H]

+ 

165.06844; 178.07695; 189.07059; 191.08656; 

193.06491; 194.07216; 205.06406; 222.06624; 
239.07147 

GNPS WHFUDAOCYRYAKQ-LBPRGKRZSA-N 

13 Lauroscholtzine 342.17014 
[M+H]

+ 
165.07108; 179.08540; 194.07216; 207.08092; 
210.06694; 222.06624; 237.09293; 265.08417 

GNPS ZFLRVRLYWHNAEC-AWEZNQCLSA-N 

14 Reticuline 330.16918 
[M+H]

+ 
115.05604; 137.05959; 143.04938; 175.07408; 

177.07678; 192.10281; 299.12604 
MoNA BHLYRWXGMIUIHG-HNNXBMFYSA-N 

15 Armepavine 314.17505 
[M+H]

+ 

103.05588; 107.04881; 115.05384; 121.06413; 

131.04800; 151.07916; 237.09293 
GNPS ZBKFZIUKXTWQTP-QGZVFWFLSA-N 

16 Zenkerine 298.14367 
[M+H]

+ 

152.06110; 165.06844; 178.07695; 189.07059; 

207.08092; 251.06995; (281.14987) 
GNPS RELZHBBKERFUAJ-CQSZACIVSA-N 

17 Tuduranine 298.14343 
[M+H]

+ 
152.06110; 165.06844; 178.07695; 189.07059; 

207.06621; 235.05991; 281.11902 
Proposed KUECBJOPWMRHEX-CQSZACIVSA-N 

18 Diospiriofoline 326.13859 
[M+H]

+ 

221.0586; 237.0898; 249.0552; 265.0875; 279.0586; 

295.0969  
Proposed 

*  CO[C@@H]1[C@@]2([H])N(CCc3c2c 

(c4c1cccc4O)c5c(OCO5)c3)C 

19 Thaliporphine 342.16985 
[M+H]

+ 

152.06110; 165.07108; 178.07695; 189.07059; 

193.06491; 205.06406; 207.08092; 221.05864; 
251.10883 

GNPS SAERKXUSZPTMCQ-UHFFFAOYSA-N 

20 Predicentrine 342.17007 
[M+H]

+ 

220.08670; 251.10559; 279.10300; 296.10599; 

311.12857 
MoNA OUTYMWDDJORZOH-AWEZNQCLSA-N 
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21 Nuciferine 296.16469 
[M+H]

+ 

165.06844; 178.07695; 179.08540; 189.07059; 
190.07584; 191.08656; 207.08864; 219.08057; 

(265.12079) 

GNPS ORJVQPIHKOARKV-OAHLLOKOSA-N 

22 Corydine 342.17042 
[M+H]

+ 

165.06844; 179.08540; 193.06491; 207.08092; 

219.08057; 221.06168; 238.06065; 247.07423; 

253.08632; 265.08417 

GNPS IDQUPXZJURZAGF-ZDUSSCGKSA-N 

23 Domesticine 326.13834 
[M+H]

+ 

151.05402; 165.07108; 177.06862; 189.07059; 

205.06406; 233.06061; 235.07558 
GNPS ZMNSHBTYBQNBPV-ZDUSSCGKSA-N 

24 Dehydrodicentrine 338.13891 
[M+H]

+ 

165.07108; 177.06862; 205.06406; 235.07558; 

263.07019; 295.09686; 
Proposed *  COc1cc2cc3N(C)CCc4cc5OCOc5c(c2cc1OC)c34 

25 Norisocorydine 328.15421 
[M+H]

+ 

152.06110; 165.06844; 178.07695; 189.06778; 

191.08656; 207.07799; 219.08057; 221.05864; 
236.08318; 238.06381;  247.07423; 253.08632; 

265.08417; (311.12857) 

GNPS OHDQLTAYHMLRBA-LBPRGKRZSA-N 

26 Laurotetanine 328.15429 
[M+H]

+ 

165.06844; 182.06990; 194.07216; 205.06406; 

207.07799; 222.06624; 225.09052; 237.08978; 

253.08632; 265.08417; 281.08130; (311.12857) 

GNPS GVVXPMORGFYVOO-ZDUSSCGKSA-N 

27 Nordicentrine 326.13862 
[M+H]

+ 

152.06110; 165.06844; 179.08267; 189.07059; 

205.06406; 207.08092; 221.05864; 235.07558; 
263.07019 

GNPS YNWJEUJZYKLCJG-ZDUSSCGKSA-N 

28 Nornantenine 326.13864 
[M+H]

+ 

165.06844; 177.06862; 189.07059; 205.06406; 

223.07613; 235.07558; 251.06995; 263.07019; 

279.06543 

GNPS JWXKBCGJLCEZTJ-UHFFFAOYSA-N 
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29 Nornuciferine 282.14870 
[M+H]

+ 

152.06110; 165.06844; 178.07695; 179.08540; 

189.07059; 191.08656; 202.07614; 207.08092; 

235.07558; (265.12411) 

GNPS QQKAHDMMPBQDAC-AWEZNQCLSA-N 

30 Lirinidine 282.14850 
[M+H]

+ 

141.06770; 152.06110; 165.06844; 178.07695; 

179.08540; 189.07059; 190.07584; 191.08656; 

207.08092; 218.07373; (251.10559) 

GNPS YXVXMURDCBMPRH-AWEZNQCLSA-N 

31 Glaucine 356.18513 
[M+H]

+ 

165.06844; 178.07695; 191.08374; 208.08569; 
220.05029; 236.08318; 251.06670; 267.10580; 

279.09958; 295.09686 

GNPS RUZIUYOSRDWYQF-HNNXBMFYSA-N 

32 Roemerine 280.13274 
[M+H]

+ 
152.06110; 165.07108; 178.07695; 189.07059; 
190.07584; 191.08656; 201.07150; 218.07071 

GNPS JCTYWRARKVGOBK-CQSZACIVSA-N 

33 Nantenine 340.15406 
[M+H]

+ 

165.06844; 177.06862; 205.06406; 223.07307; 
235.07558; 263.07019; 278.09259; 294.08945; 

309.11176 

MoNA WSVWKHTVFGTTKJ-AWEZNQCLSA-N 

34 Dicentrine 340.15426 
[M+H]

+ 
251.06670; 278.09601; 279.06543; 280.06732; 

309.11176 
GNPS YJWBWQWUHVXPNC-AWEZNQCLSA-N 

35 Dehydronuciferine 294.14903 
[M+H]

+ 
165.06844; 193.09901; 207.07799; 218.07071; 
219.07755; 235.07558; 249.09068; 263.07019 

Proposed JBGSWIBJAGBGOP-UHFFFAOYSA-N 

36 Dicentrinone 336.08626 
[M+H]

+ 

206.05804; 234.05450; 263.05695; 275.05881; 

292.06232; 320.05484 
GNPS NEQVOBXBOFZEMR-UHFFFAOYSA-N 

37 Leucoxylonine 400.17563 
[M+H]

+ 
237.08978; 265.08749; 293.08026; 323.09140; 

338.11688; 369.13336 
Proposed SFHWHWVEDBDXLV-AWEZNQCLSA-N 
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38 Stephenanthrine 294.14881 
[M+H]

+ 

165.06844; 178.07695; 189.07059; 191.08374; 

201.06860; 219.08057; 249.09068 
Proposed FXTBDJZGDJJCQU-UHFFFAOYSA-N 

39 Argentinine 296.16515 
[M+H]

+ 

152.06110; 165.06844; 179.08540; 189.07059; 

190.07584; 191.08656; 208.08864; 217.06319 
GNPS HCXNUWJYBNHDAE-UHFFFAOYSA-N 

40 Thalicthuberine 354.16966 
[M+H]

+ 

165.07108; 177.05501; 189.06778; 205.06406; 
223.07307; 233.06061; 235.07558; 251.06995; 

278.09259; 279.06543; 294.08945 

GNPS DDCILWXYWBKXKC-UHFFFAOYSA-N 

41 Discretamine 328.15342 
[M+H]

+ 

135.05959; 146.05649; 151.07413; 163.06190; 

178.08514; 207.06621 
GNPS KNWVMRVOBAFFMH-UHFFFAOYSA-N 

42 Sesamin 355.11784 
[M+H]

+ 
91.05564; 197.06081; 247.07423; 355.11987 MoNA PEYUIKBAABKQKQ-AFHBHXEDSA-N 

43 Ocophylol B 359.18565 
[M+H]

+ 
123.04333; 151.07413; 165.08946; 177.09039; 

189.09027; 229.12169 
Proposed 

*  COc1cc(cc(OC)c1OC)c2oc3c(OC)cc(C=O)cc 
3c2C 

44 Eusiderin 387.17956 
[M+H]

+ 
151.07413; 165.05530; 177.05501; 189.08746; Proposed 

* COc1c(OC)c(OC)cc([C@H]2Oc3c 

(O[C@@H]2C)c(OC)cc(CC=C)c3)c1 

45 Licarin B 325.14306 
[M+H]

+ 

107.04881; 135.04391; 143.08607; 151.07413; 

162.06853; 163.07495; 203.10658 
Proposed DMMQXURQRMNSBM-YZAYTREXSA-N 

46 Licarin A 327.15865 
[M+H]

+ 

137.05719; 143.08607; 151.07413; 165.06844; 

178.07695; 171.08144; 188.04839; 193.09901; 
203.06870; 221.09512; 295.13553 

MoNA ITDOFWOJEDZPCF-FNINDUDTSA-N 

47 Armenin B 373.16390 
[M+H]

+ 

153.09177; 165.05855; 179.03342; 203.07161; 

229.08763; 241.08679; 257.08096; 341.13953; 
379.17303 

Proposed SSPDVRMNHFFRCE-JDEKTIPCSA-N 
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48 Quinic acid 191.05433 [M-H]- 
85.02814; 93.03156; 127.03786; 137.02254; 171.02654; 

173.04324; 191.05431 
MoNA AAWZDTNXLSGCEK-LNVDRNJUSA-N 

49 Taxifolin 303.04983 [M-H]- 

125.02214; 137.02254; 153.01779; 175.03928; 

217.04663; 241.04916; 259.05661; 275.05774; 
285.03790 

GNPS CXQWRCVTCMQVQX-LSDHHAIUSA-N 

50 Catechin / Epicatechin 289.07091 [M-H]- 
93.0156; 109.02729; 123.04298; 137.02254; 159.04279; 

187.03732 
MoNA 

PFTAWBLQPZVEMU-DZGCQCFKSA-N / 

PFTAWBLQPZVEMU-UKRRQHHQSA-N 

51 Isoquercitrin 463.08689 [M-H]- 
151.00093; 243.02718; 255.02904; 271.02179; 

300.02765; 463.0877 
MoNA OVSQVDMCBVZWGM-QSOFNFLRSA-N 

52 Vitexin-2'-O-rhamnoside 577.15701 [M-H]- 
293.04349; 311.05334; 341.06476; 413.08524; 

457.11850 
GNPS LYGPBZVKGHHTIE-HUBYJIGHSA-N 

53 Rutin 609.14699 [M-H]- 
151.00345; 178.99718; 243.02718; 255.02904; 

271.02179; 300.02408; 301.03207 
GNPS IKGXIBQEEMLURG-NVPNHPEKSA-N 

54 Quercimeritrin 463.08762 [M-H]- 

199.04004; 227.03430; 243.02718; 255.02904; 

271.02515; 289.07208; 300.02765; 301.03207; 

463.08667 

Proposed BBFYUPYFXSSMNV-HMGRVEAOSA-N 

55 Vitexin 431.09731 [M-H]- 
269.04352; 283.06070; 311.05695;323.05396; 

341.06476 
GNPS SGEWCQFRYRRZDC-VPRICQMDSA-N 

56 Quercitrin 447.09299 [M-H]- 
151.00345; 227.03430; 243.02718; 255.02904; 

271.02515; 300.02765; 447.09302 
GNPS OXGUCUVFOIWWQJ-HQBVPOQASA-N 

57 Reynoutrin 433.07686 [M-H]- 
151.00093; 199.04004; 227.03122; 227.03122; 

243.02718; 255.02904; 271.02179; 300.02408 
MoNA PZZRDJXEMZMZFD-BWYUNELBSA-N 
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58 Astragalin 447.09298 [M-H]- 183.04088; 227.03430; 255.02904; 284.03290 MoNA JPUKWEQWGBDDQB-QSOFNFLRSA-N 

59 Apigenin-7-O-rutinoside 577.15675 [M-H]- 117.03406; 268.03702; 269.0475 MoNA FKIYLTVJPDLUDL-SLNHTJRHSA-N 

60 Schaftoside / Isoschaftoside 563.14164 [M-H]- 
353.06760; 383.08264; 413.08524; 443.09760; 

473.10629; 563.14203 
GNPS 

MMDUKUSNQNWVET-VYUBKLCTSA-N / 
OVMFOVNOXASTPA-VYUBKLCTSA-N 

61 Afzelin 431.09706 [M-H]- 
107.01432; 183.04364; 211.03810; 227.03430; 

255.02904; 284.02945; 285.0238 
MoNA SOSLMHZOJATCCP-AEIZVZFYSA-N 

62 
Kaempferol 3-4''-p-

coumarylrhamnoside 
593.12992 [M-H]- 163.0387; 285.0379; 291.0841; Proposed RFTKNPGPPJOOBI-NSPOHDSESA-N 

63 Quercetin 301.03286 [M-H]- 
107.01220; 121.02779; 151.00093; 227.03430; 

243.02718; 271.02179; 301.03207 
MoNA REFJWTPEDVJJIY-UHFFFAOYSA-N 

64 Apigenin 269.04407 [M-H]- 
117.03185; 149.02243; 151.00093; 201.05260; 

225.05504; 227.03430; 269.04352 
GNPS KZNIFHPLKGYRTM-UHFFFAOYSA-N 

65 Kaempferol 285.03873 [M-H]- 

143.04767; 159.04279; 171.04260; 187.03732; 

201.05550; 211.03810; 227.03430; 239.05389; 

285.03790 

GNPS IYRMWMYZSQPJKC-UHFFFAOYSA-N  

66 

Kaempferol 3-(2'',4''- 
di-(E)-p-coumaryl-

rhamnoside) / Kaempferol 3-

(3'',4''- 
di-(E)-p-coumaryl-

rhamnoside) 

723.17282 [M-H]- 
145.02815; 187.03732; 229.05013; 255.02904; 
284.03290; 285.03790; 437.12308; 577.13794; 

723.17230 

GNPS KMOHJUXDKSMQOG-OLHCXIDTSA-N  

 #Fragment ions between brackets were not found in the reference spectra but were proposed based on chemical knowledge of MS fragmentation and observed MSE spectra. *SMILES is provided, 

once referred Inchkey is not available. 
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Table S2 |   Metadata for Ocotea plant samples. Including collection details, species information, location, geographical coordinates, related activity, and 

references. Provides contextual information abou t analyzed samples to enable biological interpretation of metabolomics data. 

Code Date Specie Popular name Synonym Location 
Geographical 

location 
Related activity Reference 

AM 1935 Ocotea amazonica (Meiss) Mez unknown X 

Fazenda da cachoeira, Tombos, Minas 

Gerais, Brazil (Jardim Botânico de Belo 

Horizonte) 

- 
No reported 

activity 
x 

AU 2013 Ocotea acutifolia (Nees) Mez canela-branca X 
Santa Rosa, Ruta Nacional 118, Km 

72, Concepción, Corrientes, Argentina 

72°28′18.0″S 

58°08′21.0″ W 

Cytotoxic 

activity against 

human cancer 

cell lines and 

mutagenic and 

genotoxic effects 

on wing cells of 

Drosophila 

melanogaster 

Garcez et al. 

(2011) and 

Guterres et 

al. (2013) 

AY 2005 Ocotea aciphylla (Nees & Mart.) Mez canela-amarela X 
Serra das Almas - Inácio Pinto, Sítio Gaia 

da Mata, Rio de Contas, Bahia, Brazil 

13°32′14.0″S 

41°54′14.0″ W 

In vitro 

inhibitory 

activity over 

AChE and 

acaricidal 

activity against  

Rhipicephalus 

(Boophilus) 

microplus 

Carneiro et 

al. (2018) 

and 

Conceição et 

al. (2017) 

BA 2004 Ocotea brachybotrya (Meisn.) Mez louro-verdadeiro x 

Paque estadual do vale do rio doce, 

Timóteo, Minas Gerais, Brazil (ICB-

UFMG) 

19°35′28.0″S 

42°34'′07.0″ W 

No reported 

activity 
x 

BI 2005 Ocotea bicolor Vattimo-Gil canela-preta x 

Parque Estadual de Ibitipoca, Floresta no 

acero do parque, Lima Duarte, Minas 

Gerais, Brazil 

- 

In vitro 

antioxidant 

activity 

Damasceno 

et al. (2017) 
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BR 2001 Ocotea bragai Coe-Teix. unknown x 
Parque Estadual da Cantareira, Região das 

águas, Mariporã, São Paulo, Brazil 
- 

No reported 

activity 
x 

CA 2007 Ocotea caesia Mez unknown x 

Serra de Antônio Pereira, Samarco. 

Alegria 7, Ouro Preto, Minas 

Gerais, Brazil 

- 
No reported 

activity 
x 

CE 2003 Ocotea cernua (Nees) Mez moena negra x Morro do Imperador, Juiz de Fora, Brazil - 
No reported 

activity 
x 

CJ 2003 Ocotea cujumary Mart. cuchumari x 
APA logoa Silvana, Caratinga, Minas 

Gerais, Brazil 
- 

In vitro 

antibacterial and 

cytotoxic 

activities against 

E. coli and MCF-

7 cells, 

respectively 

Da Silva et 

al. (2017) 

CL  1974 
Ocotea calliscypha L.C.S.Assis & 

Mello-Silva 
unknown x 

Serra do Frazão, Ouro Preto, Minas 

Gerais, Brazil 

20°17′15.0″S 

43°30′19.1″ W 

No reported 

activity 
x 

CM  2003 Ocotea complicata (Meisn.) Mez unknown x 
Rodovia BA-001, Una, Bahia, Brazil 

(Prefeitura de Curitiba) 
- 

In vitro 

leishmanicidal 

activity 

Rebouças-

Silva et al. 

(2023) 

CO  2002 Ocotea corymbosa (Meisn.)Mez canela-fedida x Eldorado, Mato Grosso do Sul, Brazil - 
No reported 

activity 
x 

CT  2002 Ocotea catharinensis Mez canela-coqueiro x mata atlântica - 
No reported 

activity 
x 

DI  1993 Ocotea dispersa (Nees & Mart.) Mez canela-sassafrás x 
Serra do Itacolomi, Ouro Preto, Minas 

Gerais, Brazil 
- 

In vitro 

antileishmanial 

activity 

Alcoba et al. 

(2017) 

DO  2004 Ocotea diospyrifolia (Meisn.) Mez canela-louro x 
Mata do Baú, Barroso, Minas Gerais, 

Brazil 
- 

In vivo anti-

inflammatory 

activity and in 

vitro antibacterial 

activity against 

Salmonella spp. 

Silva et al. 

(2021) and 

Weber et al. 

(2018) 

DV  2003 Ocotea divaricata (Nees) Mez canela-segueira x 
Reserva Biológica da Represa do 

Grama, Descoberto, Minas Gerais, Brazil 
- 

No reported 

activity 
x 

EL  2001 Ocotea elegans Mez canela-broto 
Ocotea indecora 

(Schott) Mez 

Estrada para São Mateus, Camanducaia, 

Minas Gerais, Brazil (ICB-UFMG) 
- In vitro acaricidal 

and repellent 

Figueiredo et 

al. (2018) 
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activity on 

Rhipicephalus 

(Boophilus) 

microplus and 

insecticidal 

activity against 

Dysdercus 

peruvianus with 

AChE inhibition 

and 

Nascimento 

et al. (2020) 

FE  1999 Ocotea felix Coe-Teix. unknown x 
Parque Estadual do Itacolomi, Ouro 

Preto, Minas Gerais, Brazil 
- 

No reported 

activity 
x 

GA  1997 Ocotea guianensis Aubl. canela-seda x 
Margem do Rio Xingú, São Jose do 

Xingú, Mato Grosso, Brazil 
- 

No reported 

activity 
x 

GL  1971 Ocotea glauca (Nees & Mart.) Mez louro x 
Santa Rita Durão, Mariana, Minas 

Gerais, Brazil 

20°22′40.0″S 

43°24′57.9″ W 

No reported 

activity 
x 

GU  2001 Ocotea glaucina (Meisn.) Mez unknown 

Ocotea notata 

(Nees & Mart.) 

Mez 

Estrada Grão Mongol-Cristália KM 6, 

Grão Mongol, Minas Gerais, Brazil (USP) 

16º35′'47.0″S 

42º54′05.0″ W 

In vitro antiviral 

activity against 

Herpes simplex 

virus types 1 and 

2, antioxidant 

activity, in vitro 

anti-

mycobacterial 

and 

immunomodulato

ry activities and 

in vitro 

antifungal 

activity against 

Sporothrix 

brasiliensis 

Garrett et al. 

(2012), 

Pereira et al. 

(2019), Costa 

et al. (2015 

and 2021) 

and de Souza 

et al. (2023) 

GZ  2006 Ocotea glaziovii Mez canela-amarela* x 

Mananciais da Serra, Represa do 

Carvalinho, FOM/FODM, Piraquara, 

Paraná, Brazil 

- 
Anxiolytic and 

antiviral 
x 

HY  1993 Ocotea hypoglauca (Nees & Mart.) Mez unknown x 

Parque Estadual do Itacolomi, Estrada 

para a Fazenda do Manso, Ouro 

Preto, Minas Gerais, Brazil 

- 
No reported 

activity 
x 

IN  2001 Ocotea indecora (Schott) Mez canela 
Ocotea elegans 

Mez 

Reserva Biológica da Represa do Grama, 

Descoberto, Minas Gerais, Brazil 
- In vitro larvicidal 

effect against 

Machado et 

al. (2023) 
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Aedes aegypti 

larvae 

KU  1979 
Ocotea kuhlmannii Vattimo-Gi/Ocotea 

nectandrifolia Mez 
canela-burra 

Ocotea 

nectandrifolia Mez 

Ilha de Santa Catarina - Lagoa do Peri, 

Altitude: 300m., Florianópolis, Santa 

Catarina, Brazil 

- 
Antifungal-

Candida sp 
x 

LA  2010 Ocotea lanata (Nees & Mart.) Mez unknown x 
Rancho das Tábuas, Angelina, Paraná, 

Brazil (FURB) 

27°37′49.0″S 

49°02′58.0″ W 

No reported 

activity 
x 

LC  2003 Ocotea lancifolia (Schott) Mez canela-sabão 

Ocotea lanceolata 

(Nees) Nees; 

Ocotea variabilis 

Mart. 

Parque do São Gonçalo do Rio Preto, São 

Gonçalo do Rio Preto, Minas Gerais, 

Brazil (ICB-UFMG) 

18°06′54.0″S 

43°20′28.0″ W 

In vitro acaricidal 

activity on 

Rhipicephalus 

(Boophilus) 

microplus,  in 

vitro antifungal 

activity against 

Fusarium 

moniliforme(a), 

Trametes 

versicolor and 

Gloeophyllum 

trabeum (b), in 

vitro antioxidant 

activity and in 

vitro 

antiprotozoal 

activities against 

Leishmania spp. 

and 

Trypanossoma 

cruzi 

Barbosa et al. 

(2013), da 

Silva et al. 

(2018) (a)and 

(2017) (b), 

and Fournet 

et al. (2007) 

LF  1992 Ocotea longifolia Kunth louro-ingá x 
Alto do Galo, Domingos Martins, Espírito 

Santo, Brazil 
- 

In vitro cytotoxic 

activities against 

cancer cell lines 

HepG2 and 

HL60 and 

insecticide 

activity against  

Sitophilus 

zeamais 

da Silva et al. 

(2016) and 

Prieto et al. 

(2010) 

LG  1938 Ocotea langsdorffii (Meisn.) Mez unknown x Serra do Cipó Minas Gerais, Brazil 
19°15′30.0″S 

43°33′04.0″ W 

No reported 

activity 
x 
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LN  2009 Ocotea lanceolata (Nees) Nees canela-pilosa 
Ocotea lancifolia 

(Schott) Mez 

Parque Nacional do Iguaçu, Foz do 

Iguaçu, Paraná, Brazil (Prefeitura 

Municipal de Curitiba) 

25°32′52.0″S 

54°35′17.1″ W 

In vitro acaricidal 

activity on 

Rhipicephalus 

(Boophilus) 

microplus,  in 

vitro antifungal 

activity against 

Fusarium 

moniliforme(a), 

Trametes 

versicolor and 

Gloeophyllum 

trabeum (b), in 

vitro antioxidant 

activity and in 

vitro 

antiprotozoal 

activities against 

Leishmania spp. 

and 

Trypanossoma 

cruzi 

Barbosa et al. 

(2013), da 

Silva et al. 

(2018) (a)and 

(2017) (b), 

and Fournet 

et al. (2007) 

LO  2003 Ocotea lobbii (Meisn.) Rohwer unknown x 
Canavieiras, Bahia, Brazil (Prefeitura 

Municipal de Curitiba) 

22°05′21.1″S 

43°49′40.0″ W 

No reported 

activity 
x 

LX  1997 Ocotea laxa (Nees) Mez canela-pimenta x 

Parque Estadual do Itacolomi, Córrego do 

Belchior, , Ouro Preto, Minas 

Gerais, Brazil 

20°17′15.0″S 

43°30′19.0″ W 

No reported 

activity 
x 

MI  2003 Ocotea minarum (Nees & Mart.) Mez canela-vassoura x 
Fazenda Renascença, Bonito, Mato grosso 

do Sul, Brazil  

In vitro 

antioxidant 

activity 

Rodrigues et 

al. (2019) 

MU  2007 Ocotea nummularia canelinha x 
Serra da Piedade, Caeté, Minas 

Gerais, Brazil 

19°52′47.9″S 

43°40′10.9″ W 

No reported 

activity 
x 

NE  2010 Ocotea nectandrifolia Mez canela-burra x 

Anta Branca (antigo Alto Rio do Oeste), 

Rio do Campo, Santa Catarina, Brazil 

(FURB) 

26°54′36.0″S 

50°13′13.0″ W 

No reported 

activity 
x 

NI  2003 Ocotea nitida (Meisn.) Rohwer louro* x 
Morro do Gavião, Dionísio, Minas Gerais, 

Brazil 

19°50′03.0″S 

42°33′07.0″ W 

No reported 

activity 
x 
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NO  2010 Ocotea notata (Nees & Mart.) Mez louro-pipoca 
Ocotea glaucina 

(Meisn.) Mez 

Fazenda Lucuri, Serra do Curral Frio, 

Umburanas, Bahia, Brazil 

10°43′58.0″S 

41°19′35.0″ W 

In vitro antiviral 

activity against 

Herpes simplex 

virus types 1 and 

2, antioxidant 

activity, in vitro 

anti-

mycobacterial 

and 

immunomodulato

ry activities and 

in vitro 

antifungal 

activity against 

Sporothrix 

brasiliensis 

Garrett et al. 

(2012), 

Pereira et al. 

(2019), Costa 

et al. (2015 

and 2021) 

and de Souza 

et al. (2023) 

NT  2008 Ocotea nitidula (Nees et Mart. ex Ness) unknown x 
Parque Estadual do Itacolomi, Ouro 

Preto, Minas Gerais, 
- 

No reported 

activity 
x 

NU  2009 Ocotea nutans (Nees) Mez unknown x 
Brazil, Minas Gerais, Mariana, Parque 

Estadual do Itacolomi 

20°17′15.0″S 

43°30′19.0″ W 

In vitro activity 

against Aedes 

aegypti larvae 

and antioxidant 

activity 

Betim et al. 

(2019) and 

(2021) 

OD  2004 Ocotea odorifera Vell. Rohwer canela-sassafrás 
Ocotea pretiosa 

(Nees) Mez 

Reserva Biológica da Represa do 

Grama, Descoberto, Minas Gerais, Brazil 
- 

In vivo anti-

inflammatory 

activity, in vitro 

antibacterial 

activity against 

Staphylococcus 

aureus (a, b and 

c), in vitro 

antioxidant and 

antimutagenic 

activities (a), in 

vitro antifungal 

activity against 

Candida 

parapsilosis, in 

vitro 

antileishmanial 

activity and  

insecticidal and 

repellent 

Alcantara et 

al. (2021), 

Gontijo et 

al.(2017) (a), 

de Almeida et 

al.(2020) (b) 

and (2022) 

(c), 

Yamaguchi et 

al.(2010), 

Alcoba et al. 

(2017) and 

Mossi et al. 

(2013) 
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activities against 

Sitophilus 

zeamais 

PA  2011 
Ocotea paranaenses Brotto, Baitello, 

Cervi & E.P.Santos 
unknown x 

Morro dos Perdidos, Serra da Araçatuba, 

Guaratuba, Paraná, Brazil 

25°52′58.0″S 

48°34′28.9″ W 

In vitro 

antibacterial 

activity against 

Staphylococcus 

aureus and 

antioxidant 

activity 

Gribner et al. 

(2022) 

PC  2008 Ocotea pulchella (Nees & Mart.) Mez canela-lageana x 
Pedra Branca, Pocinhos do Rio Verde, 

Caldas, Minas Gerais, Brazil 

21°55′24.9″S 

46°23′09.9″ W 

In vitro 

antifungal 

activity against 

Sporothrix 

brasiliensis, in 

vitro antioxidant 

activity, in vitro 

antiviral activity 

against SuHV-1, 

and molluscicidal 

and antiparasitic 

effects on 

Biomphalaria  

glabrata and 

Schistossoma 

mansoni, 

respectively 

de Souza et 

al. (2023), 

Reboucas et 

al. (2015), 

Padilla et al. 

(2018) and 

Passos et al. 

(2020) 

PE  1998 Ocotea percoriacea Kosterm. unknown x 

Cachoeira das Androinhas, Estrada à 

esquerda, Ouro Preto, Minas 

Gerais, Brazil 

20°17′15.0″S 

43°30′19.1″ W 

In vitro 

inhibitory 

activity over 

AChE 

Cassiano et 

al. (2019) 

PH  2010 Ocotea pulchraVattimo-Gil canela x 
Rio Veado, Nova Trento, Santa 

Catarina, Brazil 

27°21′38.0″S 

49°08′13.0″ W 

No reported 

activity 
x 

PL  2006 Ocotea pulchea Vattimo-Gil unknown x 

Reserva Biológica Municipal Santa 

Cândida, Juiz de Fora, Minas 

Gerais, Brazil 

- 
No reported 

activity 
x 
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PO  1906 Ocotea pomaderroides (Meisn.) Mez canela x 
Miguel Burneir, Ouro Preto, Minas Gerais, 

Brazil 
- 

In vitro 

inhibitory 

activity over 

AChE 

Reis et al. 

(2022) 

PR  1995 Ocotea porosa (Nees & Mart.) Barroso imbuia x 
Buraco do Padre, Ponta Grossa, Paraná 

(Prefeitura Municipal de Curitiba) 
- 

In vitro 

antibacterial 

activity against 

Staphylococcus 

aureus and in 

vitro cytotoxic 

effects on 

McCoy, B16F10 

and MCF7 cell 

lines 

Brito (2009) 

and Brutulim 

et al. (2020) 

PT  1994 Ocotea pretiosa (Nees) Mez canela-sassafrás 
Ocotea odorifera 

Vell. Rohwer 

Mata do Morro Redentor, Juiz de Fora, 

Minas Gerais, Brazil 
- 

In vivo anti-

inflammatory 

activity, in vitro 

antibacterial 

activity against 

Staphylococcus 

aureus (a, b and 

c), in vitro 

antioxidant and 

antimutagenic 

activities (a), in 

vitro antifungal 

activity against 

Candida 

parapsilosis, in 

vitro 

antileishmanial 

activity and  

insecticidal and 

repellent 

activities against 

Sitophilus 

zeamais 

Alcântara et 

al. (2021), 

Gontijo et 

al.(2017) (a), 

de Almeida et 

al.(2020) (b) 

and (2022) 

(c), 

Yamaguchi et 

al.(2010), 

Alcoba et al. 

(2017) and 

Mossi et al. 

(2013) 

PU  2008 Ocotea puberula (Rich.) Nees canela-babosa x 
Parque Estadual do Itacolomi, Ouro 

Preto, Minas Gerais, 

20°17′15.0″S 

43°30′19.1″ W 

In vitro activity 

against 

Trypanosoma 

cruzi, in vivo 

activities of 

wound healing 

Barbosa et al. 

(2020) and 

(2021), 

Arcaro et al. 

(2023) and 
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and 

antinociceptive 

activity in murine 

models 

Montrucchio 

et al. (2012) 

SP  1994 Ocotea spectabilis (Meisn.) Mez canela-baraúna x Mariana, Minas Gerais, Brazil 
20°22′40.0″S 

43°24′57.9″ W 

No reported 

activity 
x 

SX  1994 Ocotea spixiana (Nees) Mez canelão x 

Parque Estadual do Itacolomi, Estrada 

para a Fazenda do Manso, Ouro 

Preto, Minas Gerais, Brazil 

20°17′15.0″S 

43°30′19.1″ W 

In vitro acaricidal 

activity against  

Rhipicephalus 

(Boophilus) 

microplus 

Conceição et 

al. (2020) 

TA  2007 Ocotea tabacifolia (Meisn.) Rohwer unknown x 

Serra de Antônio Pereira, Samarco. 

Alegria 7, Ouro Preto, Minas 

Gerais, Brazil 

- 
No reported 

activity 
x 

TE  2001 Ocotea tenuiflora (Nees) Mez unknown x 
Brazil, Minas Gerais, Descoberto, Reserva 

Biológica da Represa do grama 
- 

No reported 

activity  

TL  2001 Ocotea teleiandra (Meisn.) Mez canela-limão x 
Reserva Biológica da Represa do 

Grama, Descoberto, Minas Gerais, Brazil 
- 

No reported 

activity 
x 

TR  1997 Ocotea tristis (Nees & Mart.) Mez canelinha x 
Antônio Pereira, Ouro Preto, Minas 

Gerais, Brazil 

20°17′15.0″S 

43°30′29.1″ W 

No reported 

activity 
x 

VA  1977 Ocotea vaccinioides (Meisn.) Mez unknown 
Ocotea daphnifolia 

(Meisn.) Mez 

Rancharia, Ouro Preto, Minas 

Gerais, Brazil 
- 

No reported 

activity 
x 

VI  2008 Ocotea villosa Kosterm. unknown x 
Sítio Malícia, Mata do Krambeck, Juiz de 

Fora, Minas Gerais, Brazil 
- 

No reported 

activity 
x 

VL  1994 Ocotea velutina (Nees) Rohwer canelão-amarelo x 
Parque Estadual das Lauraceaes, Bocaiúva 

do sul, Paraná, Brazil 
- 

No reported 

activity 
x 

VR  1967 Ocotea variabilis Mart canela-pilosa 
Ocotea lancifolia 

(Schott) Mez 

Estrada de Campo Alegre para 

Araguaí, Campo Alegre, Minas 

Gerais, Brazil 

- 

In vitro acaricidal 

activity on 

Rhipicephalus 

(Boophilus) 

microplus,  in 

vitro antifungal 

activity against 

Fusarium 

moniliforme(a), 

Trametes 

versicolor and 

Barbosa et al. 

(2013), da 

Silva et al. 

(2018) (a)and 

(2017) (b), 

and Fournet 

et al. (2007) 
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Table S3 |   Manual annotation chemical standards from Dataset 2 with level 2 of confidence on the final data processing list. Chemical standards were 

detected and identified by matching accurate mass, isotopic pattern, and fragmentation spectra to public databases literature sources, and chemical knowledge. 

Name, exact mass, observed m/z, RT, adducts, detected in high or low concentration in processed .mzML data, main MS/MS fragments, and supporting 

international identifier (InChIKey) are provided. 

ID Name 
Exact 

mass 

Observed 

m/z 
RT Adduct 

High  (H) or low 

(L) concentration 
MS/MS fragments InChIKey 

1a Vancomycin 1447.4302 724.72009 0.50 [M+2H]2+ H  

100.07672; 144.10208; 329.07394; 

800.10370; 1087.28760; 1115.28979; 

1143.27893                                      

MYPYJXKWCTUITO-

LYRMYLQWSA-N 

2a Nystatin 925.50350 926.51166 2.89 [M+H]+ H / L 

161.13705; 279.12503; 297.13632; 

339.14346; 655.36560; 673.36810; 

691.38489; 727.40198; 745.41968; 

890.48761; 908.48932 

VQOXZBDYSJBXMA-

RKEBNKJGSA-N 

3a Azithromycin 748.50853 749.51324 2.10 [M+H]+ H 

72.0827; 98.09959; 116.10944; 

158.12018; 186.14938; 257.08594; 

398.29184; 434.31146; 573.41479; 

591.41864 

MQTOSJVFKKJCRP-

BICOPXKESA-N 

4a Novobiocin 612.23191 613.24133 4.35 [M+H]+ H / L 

97.06465; 133.03056; 186.07791; 

189.09122; 218.10526; 345.01031; 

396.14288 

YJQPYGGHQPGBLI-

KGSXXDOSSA-N 

Gloeophyllum 

trabeum (b), in 

vitro antioxidant 

/ antiprotozoal 

activities against 

Leishmania spp. 

and T. cruzi 

VZ I 2000 Ocotea velloziana (Meisn.) Mez canela-verde x 
Camarinhas, Ouro Preto, Minas 

Gerais, Brazil 
- 

In vitro larvicidal 

activity against 

Aedes aegypti 

larvae 

Garcez et al. 

(2009) 
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5a Puromycin 471.22302 472.23154 1.93 [M+H]+ H / L 
150.09512; 164.09294; 264.11874; 

292.11609; 309.14447; 371. ; 

RXWNCPJZOCPEPQ-

NVWDDTSBSA-N 

6a Betulinic acid 456.36035 457.37149 5.55 [M+H]+ H 

95.08782; 163.14926; 191.17993; 

231.20955; 249.05836; 297.08365; 

393.35013; 411.36081; 439.35933 

QGJZLNKBHJESQX-

FZFNOLFKSA-N 

7a Oleanolic Acid 456.36035 457.37149 5.67 [M+H]+ H / L 

95.08782; 163.14926; 191.17993; 

221.08742; 231.20955; 269.98254; 

297.08365; 393.35013; 411.36081; 

439.35933 

MIJYXULNPSFWEK-

GTOFXWBISA-N 

8a Ursolic acid 456.36035 457.37149 5.68 [M+H]+ H / L 

95.08782; 163.14926; 191.17993; 

221.08742; 231.20955; 297.08365; 

393.35013; 411.36081; 439.35933 

WCGUUGGRBIKTOS-

GPOJBZKASA-N 

9a Tetracycline 444.15327 445.15884 1.95 [M+H]+ H / L 

86.02639; 98.06068; 126.05542; 

154.05173; 241.00900; 269.07956; 

337.07254; 365.06461; 410.12222; 

427.1499; 428.13821 

NWXMGUDVXFXRIG-

WESIUVDSSA-N 

10a Doxycycline 444.15327 445.15884 2.29 [M+H]+ H 

84.04588 ; 98.09527; 126.05542; 

154.05179; 201.05211; 267.06400; 

321.07751; 339.08719; 410.12222; 

428.13821  

SGKRLCUYIXIAHR-

AKNGSSGZSA-N 

11ª Florfenicol 357.00046 358.00943 2.52 [M+H]+ H / L 

132.06059; 170.06255; 206.04065; 

208.03178; 210.05780; 241.00900; 

243.00554; 319.99149; 339.00684; 

341.00305 

AYIRNRDRBQJXIF-

NXEZZACHSA-N 

12a Thiamphenicol 355.0048 356.01337 2.02 [M+H]+ H / L 

146.06334; 198.06124; 228.10692; 

230.00967; 240.00029; 242.01303; 

307.12915 ; 309.14447 ; 311.14328 

OTVAEFIXJLOWRX-

NXEZZACHSA-N 

13a Mitomycin C 334.12772 335.13580 1.89 [M+H]+ H / L 

77.03879; 104.05007; 131.06418; 

132.07062; 169.07913; 171.09450; 

215.08574; 242.09453 

NWIBSHFKIJFRCO-

WUDYKRTCSA-N 

14a Chloramphenicol 322.01233 323.02032 2.63 [M+H]+ H / L 

132.06059; 165.06738; 206.03439; 

241.00900; 243.00554; 257.99667; 

259.99185; 274.99786; 276.9948; 

305.0064; 307.00674 

WIIZWVCIJKGZOK-

RKDXNWHRSA-N 

15a Cycloheximide 281.16271 282.16724 2.70 [M+H]+ H / L 

107.08649; 159. 12080; 187.10951; 

219.13799 229.12338; 246.15276; 

264.16132  

YPHMISFOHDHNIV-

FSZOTQKASA-N 
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Table S4 Annotation with an enhanced level of confidence (level 2) of automated annotation with the level of confidence 3 using the ActinomarineDB. 

Putative metabolites were annotated by matching accurate mass, isotopic pattern, and fragmentation spectra to public databases literature sources and chemical 

knowledge. Putative name, exact mass, observed m/z, RT, adducts, main MS/MS fragments, in-houseDB, and supporting international identifier (InChIKey) are 

provided. 

ID 
Putative 

metabolite name 

Exact 

mass 

Observed 

m/z 
RT Adduct MS/MS fragments Reference 

Actinomarine

DB hit 
InChIKey 

1b Fluostatin A 306.0528 307.0603 3.16 [M+H]+ 

236.04697; 251.06715; 

263.06979; 279.06668; 

281.0886 

GNPS Yes 
ISHOMJGAOPXCEF- 

HFFFAOYSA-N 

2b Fluostatin K 308.0684 309.0754 3.22 [M+H]+ 
263.06979; 281.07571; 

291.06593 
Proposed Yes 

CKTLJJYDUPSLCZ- 

SFHVURJKSA-N 

3b Kinobscurinone 306.0528 613.1116 4.32 [2M+H]+ 

223.279.0666; 

265.0489; 289.0502; 

307.0603;  

Proposed Yes 
CC1=CC(=C2C(=C1)C(=O)C3=C2C(=

O)C4=C(C3=O)C(=CC=C4)O)O 

4b Rosamicin 581.3564 582.3661 2.27 [M+H]+ 
98.0976; 113.05816; 

116.10474; 158.12018 
Proposed Yes 

IUPCWCLVECYZRV- 

ZMZINANSA-N 

5b γ-Actinorhodin 630.1009 631.1201 3.88 [M+H]+ 

499.10809; 543.10413; 

571.09656; 585.11890; 

613.11163 

GNPS No 

* CC1OC(CC(O7)=O)C7C(C 

(C3=C2C(O)=C(C4=CC(O)=C(C 

(C(C(O8)C(CC8=O)OC6C)=C6C5 

=O)=O)C5=C4O)C=C3O)=O)= 

C1C2=O 

6b Phomin 479.2671 480.2815 3.11 [M+H]+ 

81.07118; 91.05359; 

105.06780; 107.08649; 

119.08701; 145.01472; 

444.25668 

GNPS Yes 
GBOGMAARMMDZGR-

TYHYBEHESA-N 

7b 
Desferrioxamine 

B 
560.3533 585.3195 1.36 

[M-

2H+Al]+ 

70.06599; 241.11066; 

300.10849; 303.19546; 

368.17395; 385.20248; 

467.2079 

GNPS No 
UBQYURCVBFRUQT-

UHFFFAOYSA-N 

*SMILES are provided when InChIKey is not available. 

 



39 
 

Supplementary Text (ST-1) 

Alkaloids 

Forty-one alkaloids were level 2 annotated in the LC-HRMS QC ESI+ metabolic 

fingerprint. In the range of retention time at 0.5-1.5 min, the pyrrolidine alkaloid 4-hydroxy-N-

methylproline (1, Rt 0.49 min) was annotated in high intensity with the parent ion at m/z 

146.081. Subsequently, from 1.5 to 2.5 min, two proaporphines, a variety of noraporphines and 

aporphines and two benzylisoquinoline alkaloids were annotated. More specifically, from 1.4 

to 1.54 min, the proaporphines were annotated as crotsparine (2, Rt 1.42 min) and glaziovine 

(3, Rt 1.49 min), at m/z 284.127 and m/z 298.144, respectively. The N-methylcoclaurine (4, Rt 

1.54 min), a benzylisoquinoline, was annotated with parent ion at m/z 300.160, while the ion at 

m/z 298.144 was annotated as the aporphine 3-hydroxynornuciferine (5, Rt 1.60 min) (Fig. 4; 

Table 1; Table S1). Additionally, other two other noraporphine were annotated with parent ion 

at m/z 314.139, as the laurelliptine (6, Rt 1.66 min), and the laurolitsine (norboldine) (7, Rt 1.74 

min). Furthermore, five main alkaloid isomers eluted at Rt 1.61 – 1.96 min displayed the same 

observed parent ion at m/z = 328.155. Throughout MSE fragment analyses, compounds were 

putatively annotated as pallidine (8, Rt 1.61 min), flavinantine (9, Rt 1.75 min), which belongs 

to the morphinandienone alkaloid class that derived from the benzyltetrahydroisoquinoline 

core. In addition, the aporphine isomers boldine (10, Rt 1.85 min), isoboldine (11, Rt 1.96 min), 

and corytuberine (12, Rt 2.06 min) could be differentiated by their respective observed MSE 

fragment ions. Moreover, the aporphine lauroscholtzine (N-methyllaurotetanine) was also 

annotated at m/z 342.170 (13, Rt 2.02 min) (Fig. 4-5; Table 1; Table S1). 

Regarding the gas-phase fragmentation reactions involved in high energy channels on 

MSE/DIA mode to these isoquinoline alkaloids, several exhibited similar product ions. For 

example, for the noraporphines 6 and 7 and aporphines 10, 11 and 12 the main difference 

between them lies in their respective spectra abundances and the first neutral losses they 

undergo, which are NH3 and NH2CH3, respectively. Consequently, these compounds share a 

common diagnostic ion at m/z 297.112. Successively, the presence of the fragment ion at m/z 

265.085 (C17H13O3
+) was attributed to the loss of CH3OH (32.03 Da). The next observed 

fragment ion at m/z 237.092 (C16H13O2
+) is a result of a CO (27.99 Da) neutral loss from the 

m/z 265.085.  

Moreover, the fragmentation pathway of proaporphine alkaloids, such as 2 and 3 is 

similar to the aporphines, although with two successive CO neutral losses. The fragment ion at 

m/z 267.102 corresponds to heterocycle ring opening for both alkaloids. However, for alkaloid 
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2 this fragment ion indicates an NH3 loss, while for alkaloid 3 it indicates a CH3NH2 loss. The 

subsequent CH3OH elimination yielded the ion at m/z 235.075. Consecutive loss of two CO 

units led to the ion at m/z 207.080 with contraction of the isoquinoline A ring, subsequently, 

the ion at m/z 179.086 was formed due to the contraction of ring D. A CH2 (14.01 Da) 

elimination led to the diagnostic ion at m/z 165.068, which is the most intense fragment for 

these alkaloids (Fig. 4; Table 1; Table S1). Regarding the fragmentation of the 

morphinandienone alkaloids, the isomers 8 and 9 could not be accurately differentiated. They 

show the same fragmentation pattern of aporphines. The fragment ion at m/z 297.112 was 

observed due to the CH3NH2 neutral loss. Further, the ion at m/z 265.086 was formed due to a 

CH3OH loss followed by CO, evidenced by the presence of the ion at m/z 237.091 (Fig. 6; 

Table 1; Table S1). 

Following the annotations, in the Rt range of 2.0-2.33 min, with parent ion at m/z 

330.170 and parent ion at m/z 314.175, the benzylisoquinolines reticuline (14, Rt 2.07 min) and 

armapevine (15, Rt 2.19 min) were respectively annotated. Together with 4 (m/z 300.160, Rt 

1.54 min), these benzylisoquinoline alkaloids show a similar fragmentation. The common 

tertiary amine loss [M + H - CH3NH2]
+ of 31 Da in the high energy spectrum, showed low-

intensity fragment ions at m/z 269.117, 299.128 and 283.133 to 4, 14 and 15, respectively. The 

observed fragment ions at m/z 192.102, m/z 175.074, m/z 143.049 and m/z 137.057 from MSE 

spectra are diagnostic ions for 14 (Fig. 5; Table S1). The ions at m/z 175 and 143 are products 

of subsequent fragmentations of m/z 299, first with a loss of the substituted phenyl group 

(124.06 Da) and then with a common CH3OH neutral loss of 32.03 Da with epoxide formation. 

However, the most intense ions were at m/z 192 and m/z 137, which are a direct consequence 

of the fragmentation of the C ring (benzyl), forming either the charged isoquinoline or the 

broken C charged rings. The m/z 192 is also diagnostic for the benzylisoquinoline alkaloid 4, 

in which the rings A and B are identical to the 14 (Fig. 5). To alkaloid 15, the respective 

fragment ion was observed at m/z 206.117, which indicates one more methyl group in the 

isoquinoline ring A. In addition, the ion observed at m/z 107.049 is common to 4 and 15 and is 

related to the charged benzyl fragment and equivalent to the mentioned m/z 137, with the 

difference of 30 Da due to an additional methoxy group attached to benzyl moiety of 14. (Fig. 

5; Table 1; Table S1). 

 In the next, two isomers of noraporphine alkaloids were annotated with parent ion at 

m/z 298.144, as the zenkerine (16, Rt 2.11 min) and tuduranine (17, Rt 2.16 min), exhibiting the 

same fragmentation pattern observed for the previously discussed aporphines. In the MSE high 

energy spectra were observed for the product ions at m/z 281.150, which is related to the 
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isoquinoline opening ring and elimination of NH3. Also, the fragment ions at m/z 235.076 were 

attributed to the loss of CH3CH2OH (46.04 Da), and at m/z 207.078, due to the common neutral 

loss of CO (Fig. 4; Table 1; Table S1). In addition, at m/z 326.139, the aporphines 

diospirifoline (18, Rt 2.13 min), and other two aporphine isomers were annotated with parent 

ion at m/z 342.167 as taliporphine (19, Rt 2.24 min) and predicentrine (20, Rt 2.35 min) (Fig. 

4-5; Table 1; Table S1). Moreover, in the  range of 2.4-2.5 min, several aporphine alkaloids 

were also annotated, as the nuciferine at m/z 296.165 (21, Rt 2.40 min), corydine (22, Rt 2.41 

min) at m/z 342.171,  domesticine (23, Rt 2.47 min) at m/z 326.139, and  dehydrodicentrine (24, 

Rt 2.61 min) at m/z 340.154. In addition, two noraporphine isomers were also annotated at m/z 

328.155 as norisocorydine (25, Rt 2.48 min) and the laurotetanine (26, Rt 2.52 min). Other three 

noraporphine were observed, which two are annotated isomers at m/z 326.139, as nordicentrine 

(27, Rt 2.81 min), and nornantenine (28, Rt 2.99 min), in addition to the ion at m/z 282.149 

annotated as nornuciferine (29, Rt 3.12 min) (Fig. 4-5; Table 1; Table S1). Lastly, more six 

aporphines were observed in the range of 2.5-3.10 min, lirinidine (30, Rt 2.70 min) at m/z 

282.149, Rt glaucine (31, Rt 2.90 min) at m/z 356.185, and Rt roemerine (32, Rt 3.07 min) at 

m/z 280.133. Also, two aporphine isomers with observed parent ion at m/z 340.154 were 

annotated as nantenine (33, Rt 2.89 min) and dicentrine (34, Rt 3.09 min), as well and 

dehydronuciferine annotated at m/z 294.149 (35, Rt 3.15 min) (Fig. 4-5; Table 1; Table S1). 

The isomers 29 and 30 could be differentiated by the NH3 and CH3NH2 neutral losses 

as well. The former generates the fragment ion at m/z 265.122 resulting from the characteristic 

elimination of NH3. Then, the product ion at m/z 234.104 is formed due to the OCH3 loss. The 

fragment ion at m/z 250.099 (C17H14O2
+) was observed because of the parallel loss of CH3. 

While, for the 30, the neutral loss of CH3NH2 has resulted in the ion at m/z 251.107, in addition 

to the consequent neutral loss of CH3OH and CO, which has yielded fragment ions at m/z 

219.081 and m/z 191.086, respectively (Fig. 4; Table 1; Table S1). The same fragmentation 

pattern occurs for aporphines 21 and 35. The fragmentation pathway for the aporphine 32 

yielded a fragment ion at m/z 249.091 due to the characteristic elimination of CH3NH2 and 

CH3OH, which formed the fragment ion at m/z 219.081. The known consequent neutral loss of 

CO generated a fragment ion at m/z 191.086 (Fig. 5; Table 1; Table S1). The same 

fragmentation pattern was also observed for the other six different aporphines: 13, 20, 22, 24, 

33, and 34 (Fig. 5; Table 1; Table S1). 

Moreover, in the range of 3.3-3.9 min, fewer alkaloids were detected. Only one major 

oxo-noraporphine known as dicentrinone (36, Rt 3.33 min) was annotated at m/z 336.086. The 

last high-intensity aporphine found in the positive metabolic fingerprint included leucoxylonine 
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(37, Rt 3.52 min), annotated with precursor ion at m/z 400.176. Other high-intensity observed 

metabolites were phenanthrene alkaloids annotated as stephenanthrine (38, Rt 3.06 min) at m/z 

294.149, argentinine (39, Rt 3.20 min) at m/z 296.165, and thalictuberine (40, Rt 3.67 min) at 

m/z 354.169 (Fig. 4-5; Table 1). At last, the only member of the tetrahydroprotoberberine 

alkaloid class was annotated as discretamine (41, Rt 3.88 min) at m/z 328.160 (Fig. SX; Table 

1). The fragmentation pattern of the phenanthrene alkaloids was perceived for 38, 39 and 40. 

The fragment ion at m/z 251.107 was observed for 39, while at m/z 249.091 it was attributed to 

38. A subsequent CH3OH neutral loss followed by the CO led to the fragment ions at m/z 

219.081 and m/z 191.086, respectively (Fig. 5-6; Table 1; Table S1).   

Lignoids 

To the lignoids class, a relatively smaller subset of compounds was successfully 

annotated with level 2 of confidence, compared to the alkaloid class. Nonetheless, our 

investigation revealed the presence of numerous lignoids in the Ocotea spp. samples. These 

lignoids were level 3 annotated according to the MSI, mainly in the LC-HRMS QC ESI+ 

metabolic fingerprint by multiple annotation hits from the OcoteaDB 

((https://doi.org/10.5281/zenodo.8303382). More specifically, 89 hits from OcoteaDB were 

observed, and thus, the presence of these compounds substantiates the notion that Ocotea 

species are indeed natural sources of lignoids as well. The limited availability of publicly 

accessible spectra, combined with the high diversity of possible isomers and complex scaffolds, 

posed challenges in annotating a larger number of lignoids with level 2 of confidence, where 

we have annotated specifically one lignan and five neolignans.  

We were able to assign the parent ion at m/z 355.118 as the sesamin lignan (42, Rt 3.21 

min), exhibiting characteristic fragments. Additionally, we successfully annotated five 

neolignoids at high-intensity levels, including the bicycloneolignan ocophylol B (43, Rt 5.38 

min) of m/z 359.185 with its respective characteristics ions as well (see Supplementary Table 

S1). And the other four neolignans were annotated as  eusiderin (44, Rt 5.46 min) with an ion 

at m/z 387, licarin B (45, Rt 6.01 min) with parent ion at m/z 325.143, licarin A (46, Rt 6.31 

min) with an ion at m/z 327.159, and armenin B (47, Rt 6.35 min) with an ion at m/z 373.165. 

The fragmentation pattern of the last three, which are benzofuran is demonstrated in Fig. 6 and 

observed fragments in Table S1. 

Regarding the 46 a loss of water (18.01 Da) led to a fragment ion at m/z 309.147. This 

fragmentation event is suggestive of the presence of hydroxyl groups. The fragment at m/z 

295.135 arises from a five-membered ring opening and the concurrent loss of a methoxy group 

https://doi.org/10.5281/zenodo.8303382
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(32.03 Da). This fragmentation pathway suggests the formation of an epoxide and structural 

rearrangements. Whereas, the fragment ion at m/z 203.069 can also be formed after the opening 

of a five-membered ring, followed by a hydrogen rearrangement that leads to the breakage of 

phenylpropanoid units. This rearrangement results in a neutral loss of 124.05 Da, which is the 

diagnostic ion for different benzofurans, including 45 and 47. Moreover, the 44 has a little 

different fragmentation pattern because there are no hydroxyl groups as substituents. Instead, 

there are only methoxy groups, and the five-membered ring is a heterocycle six-membered ring 

containing 2 oxygens, classified as an oxyneolignan. The characteristic ions are demonstrated 

together with the fragmentation of 42 and 43 in (Supplementary Table S2).  

While these findings provide valuable insights into the composition of the investigated 

lignoids, it is important to acknowledge the limitations imposed by the unavailability of online 

spectra as well as the absence of deep investigations of fragmentation pathways for most of 

those compounds previously described in the Ocotea genus. Further efforts are warranted to 

obtain and incorporate additional spectrometric data, facilitating more comprehensive 

characterization and accurate annotation of lignoid compounds in future studies. 

Flavonoids 

The majority of the high-intensity ionized metabolites in the LC-HRMS QC ESI+ 

metabolic fingerprint were assigned as flavonoids, majorly the glycosylated flavonoids of 

kaempferol, quercetin and apigenin. Besides the flavonoids, a small phenolic metabolite was 

annotated as the cyclic polyol quinic acid (48, Rt 0.56 min) in high-intensity levels at m/z 

191.054. The non-glycosylated flavonoid backbones of taxifolin (49, Rt 1.96 min) at m/z 

303.050, catechin/epicatechin (50, Rt 2.07 min) at m/z 289.071, quercetin (63, Rt 3.57 min) at 

m/z 301.033, apigenin (64, Rt 2.89 min) at m/z 269.044, and kaempferol (65, Rt 4.10 min) at 

m/z 285.039 were annotated (Table 1). 

 High-intensity annotated glycosylated flavonoids include the class apigenin-based 

flavonoid patterns. Among them, vitexin (55, Rt 2.54 min) was annotated at m/z 431.097. 

Compound 55 corresponds to apigenin-8-C-glucoside, thus a β-D-glucosyl residue attached at 

position C-8 of the apigenin structure. Another notable glycosylated flavonoid is vitexin-2'-O-

rhamnoside (52, Rt 2.42 min) annotated at m/z 577.157, a derivative of vitexin with an 

additional α-L-rhamnosyl residue attached at position C-2' of the flavonoid. Additionally, 

apigenin-7-O-rutinoside (59, Rt 2.74 min) at m/z 577.157 was identified as a rutinoside 

derivative of apigenin with a rutinose moiety attached at position C-7 of the apigenin structure. 

Lastly, the annotated isomers apigenin 6-C-glucoside-8-C-arabinoside (schaftoside) or apigenin 
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8-C-glucoside-6-C-arabinoside (isoschaftoside) (60, Rt 2.85 min) at m/z 563.142 was observed. 

The former exhibits a β-D-glucosyl residue attached at position C-6 and and α-L-arabinosyl 

residue attached at position C-8 of the apigenin structure, while 60 is the opposite. Several 

apigenin-based flavonoid characteristic fragments could be observed. For compound 55, the 

fragments correspond to the aglycone carbonyl-apigenin backbone at m/z 311.052 and a neutral 

loss of 120.04 Da related to the C-C bond cleavage product, a modified β-D-glucosyl residue 

(C4H8O4) at position C-8. In the case of flavonoid 52, the fragments also correspond to the 

carbonyl-apigenin backbone, but with the neutral loss of 266.10 Da related to the additional α-

L-rhamnosyl residue attached to the oxygen at position 2’ of 55. To compound 59 the fragments 

also correspond to the classic apigenin backbone at m/z 269.047 with a loss of a deoxygenated 

rutinose moiety (C12H22O9, 308.11 Da) at position C-7. Finally, the fragment ions observed for 

compound 60 also repeat the apigenin backbone structure, with losses corresponding to the 

modified β-D-glucosyl residue (120.04 Da) at position C-6, giving a fragment ion at m/z 443.09, 

and the α-L-arabinosyl residue (90.03 Da) at position C-8, giving a fragment ion at m/z 473.106 

(Fig. 6, Table 1; Table S1). 

 A tetrahydroxyflavone compound exhibiting a pattern similar to quercetin, with a parent 

ion at m/z 609.147 (C21H20O12), was detected and annotated as rutin (53, Rt 2.46 min). Other 

flavonoids with parent ions at m/z 463.087 (C21H20O12) and m/z 447.093 (C21H20O11) were 

annotated as the respective isoquercitrin (51, Rt 2.40 min) and quercitrin (56, Rt 2.66 min). 

These compounds are also tetrahydroxyflavone O-glycosides, where the quercetin is substituted 

by α-L-glucosyl and rhamnosyl moieties, respectively, at position C-3 via glycosidic linkage. 

Another tetrahydroxyflavone, with a parent fragment ion at m/z 463.088 (C21H20O12), was 

identified as quercimeritrin (54, Rt 2.54 min). Flavonoid 51 corresponds to a quercetin O-

glucoside, characterized by the presence of a β-D-glucosyl residue attached to position C-7 of 

the quercetin structure. Furthermore, the parent ion at m/z 433.077 (C20H18O11), was annotated 

as reynoutrin (57, Rt 2.73 min), corresponding to quercetin-3-O-xylopyranoside. In the MSE 

high-energy spectra corresponding to these flavonoids, several characteristic fragments of the 

quercetin backbone could be observed. For 53, the fragments correspond to the aglycone 

quercetin backbone at m/z 301.035, with potential losses of the rutinose sugar (308.11 Da) 

moiety at position 3. The 54 also exhibits fragments corresponding to the quercetin backbone, 

with a loss of the β-D-glucosyl residue (162.053 Da) at position C-7. Flavonoid 57 shows 

fragments corresponding to the quercetin backbone as well, with a loss of the xylopyranosyl 

residue (132.042 Da) at position C-3. Finally, compounds, 56 and 51 also exhibit fragments 
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corresponding to the quercetin backbone, with a loss of the α-L-rhamnosyl residue (146.06 Da) 

at position C-3 and a glucosyl residue (162.05 Da), respectively (Fig. 6, Table 1; Table S1).   

The kaempferol-based glycosylated flavonoids were also observed in high-intensity 

levels, including the ion at m/z 447.093 that was annotated as astragalin (58, Rt 2.74 min). 

Another parent ion at m/z 431.098 (C21H20O10) was annotated as afzelin (61, Rt 3.15 min). 

Compounds 58 and 61 are glycosyl flavones in which the kaempferol aglycone is attached to 

α-L-glycosyl and rhamnosyl residues, respectively, via a 3-O-glycosidic bond. This is 

evidenced by the presence of the deprotonated aglycone ion at m/z 285.039 in the high-energy 

channel spectra, reflecting the loss of a rhamnose sugar moiety (146.06 Da) for 58 and a glucose 

moiety (162.05 Da) for 61. Additionally, kaempferol 3-4''-p-coumarylrhamnoside (62, Rt 3.52 

min) and isomers kaempferol 3-(2'',4''-di-(E)-p-coumarylrhamnoside) and kaempferol 3-(3'',4''-

di-(E)-p-coumarylrhamnoside) (66, Rt 5.56 min) were also annotated. The former is also a 

glycosyl flavone with a parent ion at m/z 577.136 (C30H26O12). The latter with observed parent 

ion at m/z 723.174 (C39H32O14) (Table 1). 62 exhibited a single loss of the coumarylrhamnoside 

moiety (292.10 Da) in high-energy channel spectra, while the loss of a di-coumarylrhamnoside 

unit (438.132 Da) in the same channels indicated the presence of the isomers 66 (Fig. 6, Table 

1; Table S1). The MSE spectrum further confirmed the aglycone’s identity with characteristic 

product ions at m/z 255.029 and 227.034, matching the literature and corroborating it as a 

kaempferol derivative. 

Moreover, fragmentations not included in the manuscript, such as the fragmentation of 

1 was proposed based on a 4-hydroxyproline available spectrum in the MoNA database. The 

difference is 14 Da more is related to the presence of a tertiary amine (N-methylated proline). 

In the MSE high energy scan was observed the main fragment ions at m/z 100.0756, which was 

related to the carboxylic acid neutral loss (46.01 Da). In addition to the ions at m/z 82.0651 that 

are explained by a water loss (18.01 Da), and at m/z 72.0808 related to the opened pyrrolidine 

ring. Besides, the 1 was a hit from the OcoteaDB, and it was also putatively identified with high 

peak areas among the QCs and Ocotea sp. extract samples (Table 1 and S1).  

Discussion regarding Supplementary Fig S3-S7. 

The high complexity of our dataset, arising from the diverse matrix of plant extracts and 

large sample size (n=60), is evident in Supplementary Fig. S3-S7. Supplementary Fig. S3 

displays the overlaid chromatograms of features at m/z 328.145 within the Rt 1.45-2.40 min 

window from the final aligned feature list generated through MZmine 3 processing. These 

features represent 7 isomers eluting nearby that could be adequately resolved using the local 



46 
 

minimum peak resolver algorithm, although some peaks remained outside the aligned area, 

suggesting potential for even further refinement. Effective resolution of complex 

chromatographic regions enables reliable differentiation and semi-quantification of compounds 

for comparative metabolomics. Furthermore, Supplementary Figs. S4 and S5, showing the final 

MS-DIAL alignment plots of m/z versus Rt, and Supplementary Figs. S6 and S7, depicting the 

full MN of both ionization modes, demonstrate the substantial data complexity. These figures 

illustrate that intricate matrices in large datasets demand sophisticated analytics for robust 

processing, visualization, and interpretation. 

Supplementary Protocol 

Step-by-step protocol for the DIA-IntOpenStream pipeline 

Software download  

 Begin by downloading all necessary software tools for the pipeline. The list of required 

software includes Waters2mzML, Msconvert, MZmine 3, MS-DIAL, KNIME, 

WinSPC, and Cytoscape; 

 Ensure that each software tool is compatible with your computer's operating system. 

Check the minimum system requirements on the respective websites of these tools to 

confirm that your machine has the necessary computational capacity to run them 

efficiently; 

 Follow the detailed instructions provided on each software's website for proper 

download and installation. These guidelines are found on their respective websites; 

 Waters2mzML: https://github.com/AnP311/Waters2mzML;  

 MSconvert: https://proteowizard.sourceforge.io/download.html; 

 MZmine 3: http://mzmine.github.io/download.html; 

 MS-DIAL: http://prime.psc.riken.jp/compms/msdial/main.html; 

 KNIME: https://www.knime.com/downloads; 

 WinSPC: https://winscp.net/eng/download.php; 

 Cytoscape: https://cytoscape.org/download.html; 

 By carefully downloading and installing these software tools, you will establish a solid 

foundation for the successful execution of the pipeline; 

 

https://github.com/AnP311/Waters2mzML
https://proteowizard.sourceforge.io/download.html
http://mzmine.github.io/download.html
http://prime.psc.riken.jp/compms/msdial/main.html
https://www.knime.com/downloads
https://winscp.net/eng/download.php
https://cytoscape.org/download.html
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Step 1) Sample preparation and data acquisition 

 Begin by preparing your samples according to standard protocols. Collect LC-

HRMS/DIA raw data (AIF or MSE), ensuring consistency in data acquisition 

parameters. It could be either profile or centroided data; 

Step 2) Data conversion to .mzML 

 For MSE Waters.RAW data, utilize Waters2mzML for conversion. Place your 

Waters.RAW files in the “raw_files folder” and run “Waters2mzML-1.2.0.exe”. Decide 

on centroiding and wait for the conversion completion. The processed .mzML files will 

be located in the “mzML_files folder”. For more details access the GitHub web page; 

 In the case of other types of DIA data (e.g, AIF from Thermo Fischer Orbitrap), 

conventional conversion on Proteowizard’s msconvert is suitable as well described in 

MZmine and GNPS documentation, online available at  

https://mzmine.github.io/mzmine_documentation/data_conversion.html and 

https://ccms-ucsd.github.io/GNPSDocumentation/fileconversion/, respectively; 

 

Step 3) Custom in-house database preparation 

 Begin by selecting a suitable database containing metabolites pertinent to your study. 

For plant and microbial natural products, databases such as KNApSAcK and the Natural 

Product Atlas are open-recommended databases. For human metabolites, the Human 

Metabolome Database (HMDB) is a suitable choice.-; 

 Download information related to the metabolites' structures (formats like .mol, .mol2, 

and .sdf) or simplified text identifiers (such as SMILES, CAS number, InChIKey, and 

IUPAC name).-; 

 Download the KNIME workflow (https://hub.knime.com/-/spaces/-

/~8bZEbbknV8tVptea/current-state/) for the creation of your in-houseDB, which is 

compatible with four common types of chemical input data: .mol, .mol2, .sdf, and .csv 

(universal table format). As an alternative option, the information can be also added as 

table input files, which can include SMILES, InChIKey, CAS number, or IUPAC 

names; 

 The outcome of this workflow is a .csv file containing three columns: chemical structure 

name, calculated molecular formula, and calculated monoisotopic mass. This file will 

https://mzmine.github.io/mzmine_documentation/data_conversion.html
https://ccms-ucsd.github.io/GNPSDocumentation/fileconversion/
https://hub.knime.com/-/spaces/-/~8bZEbbknV8tVptea/current-state/
https://hub.knime.com/-/spaces/-/~8bZEbbknV8tVptea/current-state/
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be instrumental for subsequent steps in the pipeline, particularly for enhancing the 

confidence level of the annotation to level 3; 

 This step is crucial for ensuring that your workflow is tailored to the specific metabolites 

relevant to your research, thereby enhancing the accuracy and relevance of your 

analysis; 

 

Step 4) MZmine 3 data processing 

 Import the .mzML converted data into MZmine 3 either by dragging and dropping the 

files or using the “Import Data Module” under “Raw Data Methods”; 

 Follow the basic processing sequence, utilizing separate modules for each step; 

 Mass Detection: Identifying ions from the mass spectrometry data; 

 ADAP Chromatogram Builder: Constructing chromatograms for detected ions; 

 Chromatogram Deconvolution: Resolving overlapping signals in chromatograms; 

 C13 Isotope Filter: Filtering out carbon-13 isotopes to reduce data complexity; 

 Alignment: Using either “Join Aligner” or “RANSAC” depending on dataset size and 

complexity. The former is the standard, although if your data is highly complex more 

robust algorithms are sought such as the latter; 

 Gap Filling: Filling in missing data points in the aligned feature list; 

 Optional steps, such as “Duplicate Feature Filter” and “Feature List Blank Subtraction”, 

can be applied; 

 The final step involves annotation using the in-house custom database in the .csv format 

in the “Annotation” Module. Proper mapping of .csv column names to MZmine features 

is crucial, as shown in Figure S19; 
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Fig. S19 | Custom database search settings of the “Annotation” module from MZmine 3. 

 

 Set the “Use Adducts” option based on your sample and experimental requirements. For 

instance, in Fig. S19, different adducts were selected including [M+H]+, [M+Na]+, 

[M+K]+, [M+NH4]+; 

 For detailed explanations of each step and parameter, visit the MZmine Documentation, 

including tutorial videos https://mzmine.github.io/mzmine_documentation/index.html; 

 

Step 5) Step MS-DIAL data processing 

 Start a new project in MS-DIAL and ensure the directory path is set to where the .mzML 

files are stored; 

 Configure your settings based on your experimental method of LC-MS/DIA, including 

soft ionization, chromatographic separation, all ions MS method, centroid data, the 

ionization mode, and metabolomics as target omics); 

 Upload the experiment file as described in the MS-DIAL documentation. As an 

example, we have provided our experiment file at the bottom of this supplementary 

material; 

https://mzmine.github.io/mzmine_documentation/index.html
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 Define the sample types (blank, sample, QC) and classes as required; 

 Processing in MS-DIAL is an integrated step encompassing peak picking, 

deconvolution, compound identification, and peak alignment; 

 Upload a .txt version of your in-house database for custom database annotation during 

the identification step; 

 Export the aligned results to your computer using the “GNPS export” option in MGF or 

MSP format. In the same page window of alignment parameter settings, the option to 

filter based on ion abundances from blank samples can also be set (Figure S20); 

 

Fig. S20 | Alignment result export settings from MS-DIAL. 

 Detailed information about processing steps and parameters is described online at 

https://mtbinfo-team.github.io/mtbinfo.github.io/MS-DIAL/tutorial;  

 

Step 6) Data upload to GNPS server (WinSPC) 

 For uploading files to GNPS, use an FTP client such as WinSPC. If you don't have a 

GNPS account, create one at https://gnps.ucsd.edu/ProteoSAFe/user/register.jsp; 

https://mtbinfo-team.github.io/mtbinfo.github.io/MS-DIAL/tutorial
https://gnps.ucsd.edu/ProteoSAFe/user/register.jsp
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 Connect to GNPS via WinSPC using FTP with no encryption, entering 

massive.ucsd.edu as the server (port 21), and using your GNPS credentials, as 

represented in Figure S21. 

 

Fig. S21 | WinSCP login settings to connect to GNPS server.  

 From there, you can upload the files related to the MS-DIAL alignment result, located 

in the respective directory on your computer (in the left panel) and then drag them over 

to the GNPS server (in the right panel); 

 More information about this process can be found online at https://ccms-

ucsd.github.io/GNPSDocumentation/fileupload/ and 

https://winscp.net/eng/docs/guides; 

 

Step 7) Feature-based Molecular Networking (FBMN) on GNPS 

 On the GNPS platform homepage (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-

splash.jsp), after login in, select the option “Feature Networking” in the “Advanced 

Analysis tools” section; 

https://ccms-ucsd.github.io/GNPSDocumentation/fileupload/
https://ccms-ucsd.github.io/GNPSDocumentation/fileupload/
https://winscp.net/eng/docs/guides
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
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 Essential for FBMN are two files: the feature table (.txt or .csv format) and the MS/MS 

spectral file (.mgf format), typically named GNPStable.txt and GNPSmgf.mgf in MS-

DIAL exports, respectively; 

 Optionally, upload a metadata table via WinSPC for enhanced data analysis. This tab-

separated text file can enhance dataset flexibility during data analysis and visualization. 

It is a text file (Tab-separated) that users must create these file themselves using a text 

editor (e.g. Microsoft Excel, Notepad++ for Windows, Gedit for Linux, TextWrangler 

for Mac OS). Using a Metadata table can greatly ease the visualization and analysis of 

data within Cytoscape before analysis; 

 MS/MS libraries can also be uploaded to the GNPS server or selected among the GNPS 

libraries, to perform an automated annotation; 

 In the FBMN interface (Figure S22), set parameters such as mass tolerance, cosine 

similarity, topK, and the number of fragments, as detailed in the main text. In addition, 

on the FBMN interface, by placing the cursor above some parameter an explanation 

about it appears; 

 Comprehensive guidance on FBMN is online available at 

https://lfnothias.github.io/GNPSDocumentation/featurebasedmolecularnetworking/; 

https://lfnothias.github.io/GNPSDocumentation/featurebasedmolecularnetworking/
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Fig. S22 | FBMN interface with File selection and other parameter settings. 

Step 8) Data integration, interpretation and visualization 

Part 1: MS/MS database search 

 Inspect prominent annotations from the custom in-house database (annotation with 

confidence level 3). Once the biosynthetic-related hits were matched, to enhance the 

confidence level of these annotations we manually inspect the FBMN and the MS2 

spectra of these compounds; 

 Pseudo MS2 spectra from MS-DIAL (automatic) or raw MS2 spectra on MZmine 3 

(manual) can be compared with MS2 spectra available in public databases to search for 

key fragments. We have applied the public repositories MassBank of North America 

(https://mona.fiehnlab.ucdavis.edu/) and Global Natural Products Social Molecular 

Networking (https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp); 

https://mona.fiehnlab.ucdavis.edu/
https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp
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 For compounds without available spectra, propose fragmentation pathways using gas 

phase fragmentation reactions to bolster confidence in the annotations; 

Part 2: Cytoscape visualization 

 Upon completing FBMN, export the network for visualization in Cytoscape using the 

“Export/Download Network Files (Download Cytoscape Data)” or “Advanced Views - 

External Visualization (Direct Cytoscape Preview/Download)”; 

 Information about how to customize your network on Cytoscape and improve the 

visualization can be found online at https://cytoscape.org/cytoscape-

tutorials/contents/index.html#/; 

 Integrate results from the custom database and GNPS annotations by adding the in-

house data as a new column in the node table, as shown in Figure S23. 

 Fig. S23 | Customized molecular network on Cytoscape interface. In detail, the node table with GNPS 

automatic annotations for precursor mass and retention time, and in-house custom database annotations 

(monoisotopic mass match) integrated with visual resources. 

Concluding remarks: Dive deep into your data! This exploratory phase is crucial in turning raw 

data into valuable knowledge, potentially guiding future research directions, informing 

decision-making processes, or contributing to scientific advancements. 

https://cytoscape.org/cytoscape-tutorials/contents/index.html#/
https://cytoscape.org/cytoscape-tutorials/contents/index.html#/
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Supplementary material and methods 

Solvents, plant material and crude extracts preparation (SM-1) 

All solvents used were LC-MS (acetonitrile) and HPLC grade, including hexane, 

methanol, and ethanol all were acquired from Sigma Aldrich® (St Louis, MO, USA). Formic 

acid was also supplied by Sigma-Aldrich® (St Louis, MO, USA). Ultrapure water was purified 

using a Millipore Milli-Q® water purification system (Millipore, Bedford, MA, USA). The 

liquid nitrogen was purchased from Linde® (Pullach, Munique, Germany). The OUPR 

herbarium (Federal University of Ouro Preto - UFOP) and CESJ herbarium (Federal University 

of Juiz de Fora - UFJF) supplied 1-3 leaves of 60 Ocotea sp. vouchers to this study. Table S2 

includes information about the geographical location of the plant collection, together with the 

deposit voucher numbers. The present research was registered on the National System for 

Governance of Genetic Heritage and Associated Traditional Knowledge (SisGen # A5A8F67). 

The Ocotea species received an identification code (ID) according to their specie scientific plant 

names, e.g. the O. odorifera (OD) (Table S2).  

The 60 different Ocotea species' leaves vegetal material were weighed (20 mg each) 

and then pulverized using pistil and liquid nitrogen. Subsequently, 1.7 mL of ethanol: water 7:3 

(v/v) was added to the powdered material for extraction. The extracts were placed into a warm 

ultrasound bath for 15 minutes at 35 °C (170 W, 50 kHz, L100 Schuster) and then centrifuged 

at 22 °C and 112 rcf (G-force). The collected supernatants (~1.6 mL) were partitioned with 

hexane (2 x 200 µL) for the removal of fatty material. Next, the extracts were filtered through 

polytetrafluoroethylene syringe filters (PTFE) of 0.22 μm and dried using a speed vacuum 

apparatus at 40 °C for 3 h. The extracts were maintained in a freezer at the temperature of -20 

°C before UPLC-MS experiments. 

Quality control, data acquisition and analysis (SM-2) 

As part of our internal management system, to fulfil current quality requirement 

practices for data acquisition and metabolic fingerprint analysis, an analytical quality control 

(QC) sample was prepared by pooling together 10 μL from each Ocotea sample extract at a 

concentration of 1 mg/mL (600 μL total volume). Thus, the QC consisted of a composite of all 

Ocotea sp. crude extracts prepared at 1 mg/mL concentration. The QC was spread into three 

vials, kept at 4° in the instrument rack during the whole batch analysis, and injected at the 

beginning, middle and final chromatographic batch run. To monitor the system's background 

noise and reproducibility, one replicate (ID: VI), pooled QC, and one blank (water: acetonitrile, 
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1:1 v/v) were randomly injected every 15 injections, covering the start, middle, and end of the 

chromatographic batch data acquisition. The injection volume of each sample was 5 µL. 

Chromatographic separation was achieved using a high-quality C18 (ACQUITY 

UPLC®HSS T3) reversed-phase column (1.8 μm, 100 x 2.1 mm) at 40 °C. The mobile phase 

consisted of two components: (A) 1% acidified water with formic acid, and (B) pure 

acetonitrile. A flow rate of 0.5 mL/min was maintained throughout the analysis. The 

chromatographic gradient began with an initial composition of 1% B and, was followed by a 

transition to 15% B at 0.1 min. Further changes in solvent composition occurred at 7.5 min 

(80% B), 8.5 min (99% B), and 8.6 min (1% B) until 10 min.  

The mass spectrometer operated in MSE acquisition mode with alternating high and low-

energy scans. The collision energy was set at 3 eV for low-energy scans and 25-40 eV for high-

energy scans. Instrument parameters, including cone voltage (40 V), capillary voltage (3.0 kV), 

cone gas flow (30 L/h), desolvation temperature (300 °C), source temperature (120 °C), and 

desolvation gas flow (600 L/h), were carefully optimized. High-purity nitrogen was employed 

for desolvation, collision, and cone gas. The full mass scan range was set from 50 to 1000 m/z 

for functions 1 and 2. To ensure accuracy and reproducibility, a solution of leucine-encephalin 

was used as a lock mass with m/z 554.2622 (ESI-) and m/z 556.2768 (ESI+) for identification. 

MS data were continuously collected, and lock spray calibration was performed every 10 

seconds.  

Waters2mzML development and custom in-houseDB (SM-3) 

The converter was developed by Anja Miriam Prisching (email: anja.prisching@uni-

oldenburg.de). Affiliation: Institute for Chemistry and Biology of the Marine Environment 

(ICBM), Carl-von-Ossietzky University, Oldenburg, Germany.  

URL: https://github.com/AnP311/Waters2mzML/releases/tag/v1.2.0. 

The proposed KNIME workflow streamlined and facilitated confident level 3 

annotation by leveraging chemical structures from diverse sources. We utilize popular formats 

such as .mol, .mol2, or .sdf files, redrawn from original articles or downloaded from online 

chemical databases, e.g. ChEMBL (https://www.ebi.ac.uk/chembl/) as input files to the 

KNIME node readers. Our custom in-house database, OcoteaDB, contains 492 carefully 

curated chemical structures in .mol format. We have utilized the Nuclei of Bioassays, 

Ecophysiology and Biosynthesis of Natural Products Database (NuBBE) 

(https://nubbe.iq.unesp.br/portal/nubbe-search.html) on the construction of OcoteaDB. 

NUBBE (https://nubbe.iq.unesp.br/portal/nubbe-search.html) stores chemical structures from 

mailto:anja.prisching@uni-oldenburg.de
mailto:anja.prisching@uni-oldenburg.de
https://github.com/AnP311/Waters2mzML/releases/tag/v1.2.0
https://www.ebi.ac.uk/chembl/
https://nubbe.iq.unesp.br/portal/nubbe-search.html
https://nubbe.iq.unesp.br/portal/nubbe-search.html
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Brazilian plant species with simple access to downloadable data, allowing the construction of 

particular plant species, genera, and family databases that can be automatically used in this 

workflow. For the ActinomarineDB, it compromised 6481 NPs related to the genera of 

Actinomyces, Streptomyces, Salinospora, Micromonospora, Nocardia, Actinomadura and 

Rhodococcus, downloaded from the npatlas database (https://www.npatlas.org/) in .csv format. 

 Also, the KNapSAck (http://www.knapsackfamily.com/knapsack_core/top.php) or any 

other NP product database can be used for the assembling of a SMILES or InChIKey table list 

(.csv or .xlsx). The KNIME output of this workflow is an automatic .csv table containing name, 

molecular formula and monoisotopic mass. This file can be directly uploaded to MZmine 3 or 

MS-DIAL. For MS-DIAL, a simple conversion to .txt format is necessary, with the table 

formatted to include columns for name, monoisotopic mass, and retention time (Metabolite 

name or ID, m/z, and RT, respectively). In both software, the retention time column of the .csv 

table should be null and ignored (typically set to the full run time for all rows). 

MZmine 3 data processing and analysis (SM-4) 

The following parameters were set of Ocotea extracts: mass detection of MS1 scans 

(Scan filters, MS1 level=1) using the centroid algorithm (Noise level, 500 and 350 for positive 

and negative, respectively), feature detection using the ADAP Chromatogram Builder module 

(Scan filter, MS1 level = 1; Minimum consecutive scans, 5; Minimum intensity for consecutive 

scans, 2 times the noise level; Minimum absolute height, 4 times the noise level; m/z tolerance, 

0.005 m/z or 10 ppm). Chromatogram resolving using Local minimum feature resolver 

(Dimension, retention time; Chromatographic threshold, 0.85; Minimum search range 

RT/mobility, 0.04; Minimum absolute height, equal to ADAP; Minimum ratio of peak top/edge, 

1.7; Peak duration range, 0.0-1.0 absolute; Minimum # of data points, 5). Isotope filtering using 

13C isotope filter module (m/z tolerance, 0.003 m/z or 5.0 ppm; Retention time tolerance, 0.05 

absolute; Monotonic shape, true; Maximum charge, 1; Representative isotope, most intense). 

Alignment was performed using the RANSAC aligner (m/z tolerance, 0.007 or 12 ppm; RT 

tolerance, 0.15 absolute; RT tolerance after correction, 0.1 absolute; Minimum number of data 

points, 0.2; Threshold value, 0.1) and then gap filling using the Peak finder algorithm (Intensity 

tolerance, 0.2; m/z tolerance, 0.005 m/z or 10 ppm; RT tolerance, 0.1 absolute; Minimum data 

points, 4). Duplicate feature list rows filter (Filter mode, new average; m/z tolerance, 0.005 m/z 

or 10 ppm; Rt tolerance, 0.07 absolute) and Feature list blank subtraction (Select blanks raw 

files; Minimum # of detection in blanks, 3; Quantification, area; Ratio type, Average; Fold 

change increase, true, 3; Keep or remove features below fold change, remove), were applied to 

https://www.npatlas.org/
http://www.knapsackfamily.com/knapsack_core/top.php
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achieve the final aligned feature list. All the other existing parameters not mentioned were set 

to default. The chemical level 3 annotation of the features was performed by applying the 

Search precursor mass using the local compound database (CSV) search of OcoteaDB (m/z 

tolerance: 0.005 m/z or 10 ppm; Retention time tolerance: 10 absolute; Use adducts, true, Setup: 

MS mode, respective to the data; Maximum charge, 1; Maximum molecules/cluster, 2; Adducts, 

[M+H]+, [M+Na]+; [M+K]+ and [M+NH4]
+ to positive mode; [M-H]-, [M+Cl]-, [M+Br]- and 

[M+FA]- to negative mode. The Feature list summaries of individual and aligned features with 

all parameters are online available (https://zenodo.org/records/10383866). 

To optimize the processing parameters, QC samples were used to achieve better 

deconvolution, resolution and alignment of the features. The first processing with only the QC 

and blanks was performed looking for the best result and then a second processing with QC, 

samples and blanks were performed with the same parameters. To validate the data, samples 

and QC alignment were compared using the mainly known features as markers. Regarding data 

processing of the publicly available dataset of actinobacterial extracts, some minor alterations 

were made compared to the Ocotea dataset processing. For mass detection, the noise level was 

set to 200. Chromatogram building and resolving continued in the same configuration. To 

deisotoping, in addition to 13C isotope filter (same configuration of parameters), the Isotope 

pattern finder module was utilised (Chemical elements, Br, Cl; m/z tolerance, 0.004 m/z or 7 

ppm; maximum charge of isotope m/z, 1; search in scans, Single most intense). Alignment and 

gap filling were kept unaltered. Duplicate feature list rows filter was not necessary in this case 

due to the lower number of samples. Feature list blank subtraction was used in the same 

parameter configuration. The Search precursor mass using the local compound database (.csv) 

was also used to level 3 chemical annotation of the features but through ActinomarineDB (m/z 

tolerance: 0.005 m/z or 10 ppm; Retention time tolerance: 7.6 absolute; Use adducts, true, Setup: 

MS mode, respective to the data; Maximum charge, 2; Maximum molecules/cluster, 2; Adducts, 

[M+H]+, [M+2H]2+; [2M+H]+). 

MS-DIAL data processing and analysis (SM-5) 

For data processing the parameters were set to Ocotea extracts as Data collection (MS1 

and MS2 tolerance, 0.01 and 0.05 Da, respectively; Retention time begin/end, 0/10 minutes; 

MS1 and MS/MS mass range begin/end 100/1000 Da; Maximum charged number, 2; Number 

of threads, 4), Peak detection (Maximum minimum peak height, 1000 and 50000 amplitude; 

Mass slice width of 0.1 Da for peak detection; Smoothing method, Linear weighted moving 

average; Smoothing level, 3 scans; Minimum peak width, 5 scans), MS2Dec data deconvolution 
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(Sigma window value, 0.5; MS/MS abundance cut-off, 10), Adduct search ([M+H]+ and [M-

H]-, for each mode, respectively) and Alignment (Reference file, B-01p (blank sample); 

Retention time tolerance, 0.01 minute; MS1 tolerance, 0.015; Remove features based on blank 

information, true; Sample max/blank average, 3 fold change; Gap filling by compulsion, true). 

Concerning the second data processing (publicly available dataset of actinobacterial extracts), 

the steps were highly similar to the Ocotea dataset, however, some minor alterations were 

performed to adequate the matrix differences. In Data collection, RT begin/end was set to 0/7 

minutes and MS1 and MS/MS mass range begin/end to 0/2000 Da. In addition, the option for 

considering Cl and Br elements was set. For peak detection, an amplitude of 1000 was applied 

to the Maximum minimum peak height. To adduct search, in addition to [M+H]+, [2M+H]+ and 

[M+2H]2+ were also sought. For alignment, the option of removing features based on blank 

information was not set due to several blank chromatogram peaks being present in the same 

region of the peaks from the actinobacterial samples. The other parameters were not changed. 

Following data processing the alignment lists were exported to GNPS required file format 

(Export, Alignment results, GNPS export, true; MS/MS included matrix, true; Filtering by the 

ion abundances of blank samples, true; Export format, .mgf), with feature quantification table 

(.txt) and MS/MS spectral summary (.mgf). 

Molecular networking and metabolite annotation analysis (SM-6) 

The set parameters used for generating FBMN were the same for both datasets. 

Precursor ion mass tolerance of 0.02 Da and fragment ion mass tolerance of 0.05 Da. Advanced 

network options were set accordingly to our MSE data type (Min pairs Cos, 0.6; Network TopK, 

4; Minimum Matched Fragment ions, 4; Maximum Connected Component Size (Beta), 0; 

Maximum shift between precursors, 500 Da), as well the advanced library search options 

(Library Search Min Matched Peaks, 4; Search Analogs, Don’t; Top results to report per query, 

1; Score Threshold, 0.5; Maximum Analog Search Mass Difference, 100 Da). Other advanced 

options were not set or set as default. All the GNPS job links are provided together with Zenodo 

uploaded data. 

The initial automated annotation was conducted by searching against GNPS libraries 

using FBMN. This automated annotation can also be performed within MS-DIAL using 

metabolomics MSP spectral kits. We utilized the isoquinoline-specific bank IQAMDB from 

GNPS to the positive mode for the Ocotea dataset as various alkaloids of Ocotea species belong 

to this class. Additionally, we used the NIH Natural Products Round 2 libraries in negative ion 

mode to access the flavonoid content in these samples. As no specific libraries to 
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actinobacterial-derived compounds NP were available on GNPS spectral libraries, we have 

preconized the main GNPS NP libraries to access the biggest number of metabolites in our 

samples. In this way, we have applied the following GPNS libraries: Sumner, Respect, NIH 

Natural Products Library, NIH Natural Products Library Round 2 in positive mode, 

Birmingham-UHPLC-MS-Pos, Berkeley Lab, GNPS Library, Tuebingen Natural Product 

Collection and MoNA libraries. It is worth noting that NP class and organism (family or genera) 

specific libraries are highly beneficial in enhancing the annotation process, as they help avoid 

irrelevant and non-real hits, and currently, it is not available in GNPS for use for annotation. 

Regarding the manual spectra checking, structural confirmation through careful inspection of 

fragmentation patterns by examining the MS1 and MSE spectra of the selected metabolite 

candidate was performed for each metabolite present in Table 1 using the MZmine 3.  

 

Supplementary archives (Zenodo)  

Complete additional information regarding the applicability case of Ocotea spp. 

metabolomics data is available in the Zenodo link. The following data is available online: Level 

3 annotation in both positive and negative mode; Metadata for GNPS jobs; Level 2 annotation 

from GNPS IQAMDB and NIH libraries; Feature tables generated from both MZmine 3 and 

MS-DIAL 4.9. The OcoteaDB and the ActinomarineDB were generated using the KNIME 

workflow (https://zenodo.org/records/10383866). 

 

FBMN job links 

Negative mode – NIH Natural Products (50000 amplitude cut-off) 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=79db88981e6844a7b9f1315dcebb587a 

Positive mode – IQAMDB (50000 amplitude cut-off) 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6e3ef1b75b7341c786b1b740e844d970 

Negative mode – NIH Natural Products (1000 amplitude cut-off) 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=92dda20a10d84beab0dc6c5bcb6659a2 

Positive mode – IQAMDB (1000 amplitude cut-off) 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=cb02eaf164ac476195a8255a0af6a682 

Positive mode – Actinobacterial samples – NP GNPS libraries (1000 amplitude cut-off) 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1148592a538c4a63b55f05a883cf2127 

https://zenodo.org/records/10383866
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=79db88981e6844a7b9f1315dcebb587a
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6e3ef1b75b7341c786b1b740e844d970
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=92dda20a10d84beab0dc6c5bcb6659a2
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=cb02eaf164ac476195a8255a0af6a682
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1148592a538c4a63b55f05a883cf2127
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MS-DIAL experiment file (.txt format file) 
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7   CHAPTER V – OTHER SCIENTIFIC COLLABORATIONS 

 

This chapter provides scientific collaborations in our research group and 

collaborators published in the literature during the time of this PhD. The knowledge, 

techniques and team-work learned during these four years of PhD were also built upon 

on these papers. Briefly, it consist of academic journal, year of publication, related 

main topic, and research title including publication DOI (Table 1).  

 

Table 1. Other scientific collaborations. 

(Continue) 

N° Academic Journal Year Topic Title (DOI hyperlink) 

1 
Journal of 

Ethnopharmacolo
gy 

2021 
Ocotea and 

Lauracea plants 

Confirmation of ethnopharmacological anti-
inflammatory properties of Ocotea odorifera and 

determination of its main active compounds  

2 
Revista Brasileira 

de 
Farmacognosia 

2021 

Anti-
inflammatory 

activity 

Systematic review of anti-inflammatory agents from 
Aspergillus Species  

3 
The Lancet Child 

& Adolescent 
Health 

2021 Data analysis 
Risk factors for COVID-19 mortality in hospitalised 

children and adolescents in Brazil  

4 
Chemistry & 
Biodiversity 

2022* 
Other NP and 
bioactivities 

Immunological modulation and control of 
parasitaemia by Ayahuasca compounds: 

therapeutic potential for Chagas's disease  

5 
Chemistry & 
Biodiversity 

2022 

Anti-
inflammatory 

activity / 
Metabolomics 

Anti‐inflammatory markers of hops cultivars 
(Humulus lupulus L.) evaluated by untargeted 

metabolomics strategy 

6 
Revista Virtual de 

Química 
2022 

Other NP and 
bioactivities 

 Preparative HPLC chromatographic approach for 
the rapid isolation of phytotoxins from the fungus 

Curvularia lunata of Spigelia anthelmia leaves 

7 
Chemistry & 
Biodiversity 

2023 

Ocotea and 
Lauracea plants / 

Metabolomics 

Anti‐inflammatory activity of Lauraceae plant 

species and prediction models based on their 
metabolomics profiling data  

8 
Phytochemistry 

Letters 
2023 

Lauracea plants / 
Anti-

inflammatory 

New bicyclic [3.2.1] octane neolignan derivative 
from Aniba firmula with potent in vivo anti-

inflammatory activity on account of dual inhibition  

9 
Natural Product 

Research 
2023 

Anti-
inflammatory 

activity 

In vivo evaluation of analgesic and anti-

inflammatory activity of hydroalcoholic extracts from 
Handroanthus impetiginosus and their chemical 

composition  

10 

Journal of 
Toxicology and 
Environmental 
Health, Part A 

2023 Data analysis 
Age, gender, and 11 comorbidities as risk factors 

associated with COVID-19 mortality: A retrospective 
cohort including 1.8 million individuals  

11 
Brazilian Journal 

of Biology 
2023 

Other NP and 
bioactivities 

Atividade schistosomicida do extrato etanólico dos 
galhos, folhas, flores e frutos de plantas de 

Handroanthus impetiginosus e caracterização do 
perfil metabólico por análise de UPLC-ESI-QTOF  

12 
Natural Product 

Research 
2023 

Other NP and 
bioactivities 

Insecticidal activity of extracts of Handroanthus 
impetiginosus on Plutella xylostella (Lepidoptera: 

plutellidae) larvae 

https://doi.org/10.1016/j.jep.2020.113378
https://doi.org/10.1016/j.jep.2020.113378
https://doi.org/10.1016/j.jep.2020.113378
https://doi.org/10.1007/s43450-021-00166-1
https://doi.org/10.1007/s43450-021-00166-1
https://doi.org/10.1016/S2352-4642(21)00265-0
https://doi.org/10.1016/S2352-4642(21)00265-0
https://doi.org/10.1002/cbdv.202200409
https://doi.org/10.1002/cbdv.202200409
https://doi.org/10.1002/cbdv.202200409
https://doi.org/10.1002/cbdv.202100966
https://doi.org/10.1002/cbdv.202100966
https://doi.org/10.1002/cbdv.202100966
https://doi.org/10.21577/1984-6835.20220038
https://doi.org/10.21577/1984-6835.20220038
https://doi.org/10.21577/1984-6835.20220038
https://doi.org/10.1002/cbdv.202300650
https://doi.org/10.1002/cbdv.202300650
https://doi.org/10.1002/cbdv.202300650
https://doi.org/10.1016/j.phytol.2019.01.014
https://doi.org/10.1016/j.phytol.2019.01.014
https://doi.org/10.1016/j.phytol.2019.01.014
https://www.tandfonline.com/doi/full/10.1080/14786419.2022.2134861
https://www.tandfonline.com/doi/full/10.1080/14786419.2022.2134861
https://www.tandfonline.com/doi/full/10.1080/14786419.2022.2134861
https://www.tandfonline.com/doi/full/10.1080/14786419.2022.2134861
https://doi.org/10.1080/15287394.2023.2223598
https://doi.org/10.1080/15287394.2023.2223598
https://doi.org/10.1080/15287394.2023.2223598
https://doi.org/10.1590/1519-6984.275824
https://doi.org/10.1590/1519-6984.275824
https://doi.org/10.1590/1519-6984.275824
https://doi.org/10.1590/1519-6984.275824
https://doi.org/10.1080/14786419.2023.2260069
https://doi.org/10.1080/14786419.2023.2260069
https://doi.org/10.1080/14786419.2023.2260069
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N° 
Academic 

Journal 
Year Topic Title (DOI hyperlink) 

13 
Chemistry & 
Biodiversity 

2023 
Other NP and 
bioactivities 

Chemical composition, anthelmintic activity, and 
mechanism of action of Lippia dominguensis mold. 

essential oil on Haemonchus contortus 

14 RSC Advances 2024 
Ocotea and 

Lauracea plants 
LC-MS/DIA-based strategy for comprehensive 

flavonoid profiling: an Ocotea spp. applicability case  

15 
Chemistry & 
Biodiversity 

2024 
Ocotea and 

Lauracea plants 
(submitted) - UHPLC-HRMS/DIA metabolic profiling 

of Ocotea diospyrifolia (Meisn.) Mez  

16 
Chemico-
Biological 

Interactions 
2024 

Ocotea and 
Lauracea plants 

(submitted) - Cytotoxic activity of Ocotea species on 
breast cancer cells: insights into selectivity and cell 

cycle modulation 

17 
Natural Product 

Research 
2024 

Lauracea plants / 
Anti-

inflammatory 
activity 

Evaluation of the anti-inflammatory activity of Acacia 
polyphylla and identification of a new apigenin-3-C- 

glycosylated type flavonoid  

18 
Natural Product 

Research 
2024 

Lauracea plants / 
Anti-

inflammatory 
activity 

Ex vivo inhibition of PGE2 formation in human blood 
by four bicyclico [3.2.1] octane neolignans isolated 
from Aniba firmula bark, two with unusual structural 

pattern 

19 
Natural Product 

Research 
2024 

Anti-
inflammatory 

activity 

Phytochemical investigation of Nigrospora 
zimmermanii isolated from Poincianella pluviosa 

(Sibipiruna): metabolites characterisation and 
screening for anti-inflammatory activity 

20 
Chemical Biology 
and Drug Design 

2024 

Anti-
inflammatory 

activity 

(in press) - Novel synthesized benzophenone 
thiazole hybrids exhibited ex vivo and in silico anti-

inflammatory activity 

21 
Food Research 

International 
2024 Data analysis 

Effects of geographical origin and post-harvesting 
processing on the bioactive compounds and 

sensory quality of Brazilian specialty coffee beans  

22 
ACS Chemical 
Neurosience 

2024 Metabolomics 
Metabolomics unveils disrupted pathways in 

Parkinson's disease: towards biomarker-based 
diagnosis 

23 
Phytotherapy 

Research 
2024 

Other NP and 
bioactivities 

(submitted) - Can Plant-Derived Sesquiterpene 
Lactones Be Promissory Anti-Melanoma Agents? A 

Systematic Review 

24 
Journal of 
Molecular 
Modeling 

2024 
Anti-inflammatory 

activity 

(submitted) - Anti-inflammatory boosted-QSAR 

models for predicting Nitric Oxide inhibition by 
bioactive metabolites from Aspergillus species 

Source: From author (2024) 

Note: Each publication can be accessed by ctrl clicking the DOI hyperlink in each title. 

*Scientific publication which I am the first author.  

 

 For the scientific publications listed in Table 1, the topics related to 

Ocotea/Lauraceae plants, anti-inflammatory activity, and metabolomics are highlighted 

in bold. The scientific papers from these topics were selected for further discrimination 

as they are related to the primary focus of this PhD project. Accordingly, brief 

summaries and the specific contributions of the candidate to these manuscripts have 

been highlighted below. 

 

(Conclusion) 

https://doi.org/10.1002/cbdv.202300135
https://doi.org/10.1002/cbdv.202300135
https://doi.org/10.1002/cbdv.202300135
https://doi.org/10.1039/D4RA01384K
https://doi.org/10.1039/D4RA01384K
https://doi.org/10.1080/14786419.2023.2210256
https://doi.org/10.1080/14786419.2023.2210256
https://doi.org/10.1080/14786419.2023.2210256
https://doi.org/10.1080/14786419.2022.2124248
https://doi.org/10.1080/14786419.2022.2124248
https://doi.org/10.1080/14786419.2022.2124248
https://doi.org/10.1080/14786419.2022.2124248
https://doi.org/10.1080/14786419.2024.2320733
https://doi.org/10.1080/14786419.2024.2320733
https://doi.org/10.1080/14786419.2024.2320733
https://doi.org/10.1080/14786419.2024.2320733
https://doi.org/10.1016/j.foodres.2024.114346
https://doi.org/10.1016/j.foodres.2024.114346
https://doi.org/10.1016/j.foodres.2024.114346
https://doi.org/10.1021/acschemneuro.4c00355
https://doi.org/10.1021/acschemneuro.4c00355
https://doi.org/10.1021/acschemneuro.4c00355
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N°1 - Research article - (2021): Confirmation of ethnopharmacological anti-

inflammatory properties of Ocotea odorifera and determination of its main active 

compounds 

 
Ocotea odorifera has been traditionally used in southern Brazil to treat inflammatory 

conditions like rheumatism, though lacking scientific validation. This study investigated 

its anti-inflammatory potential and identified active compounds using phytochemical 

and metabolomic approaches. In vivo tests on extracts, fractions, and essential oils 

showed significant anti-inflammatory effects, particularly in reducing edema and 

neutrophil recruitment. S-(+)-reticuline was identified as a key important feature by 

multivariate analysis, which was later isolated and confirmed to be active. Another 

feature positively correlated with the anti-inflammatory activity is likely to be a new 

compound since zero hit on the comprehensive mass database were encountered. 

Essential oils also showed significant anti-inflammatory activity. Thus, this study 

supports the traditional use of O. odorifera and highlights it as a promising source of 

anti-inflammatory compounds. 

 

Main contributions: To aid in drafting the manuscript, to assistance in the execution of 

anti-inflammatory assays, to assistance in the construction of metabolomics models 

and subsequent metabolite isolation, to aid in the elaboration of the final manuscript 

version. 

 

N°2 - Review article - (2021): Systematic review of anti-inflammatory agents from 

Aspergillus Species  

 

Fungi are known for causing various diseases but are also a promising source of 

bioactive metabolites. The chemical diversity of fungal metabolites offers potential for 

new anti-inflammatory therapies. Inflammation is linked to diseases like gout, 

autoimmune disorders, neurodegenerative diseases, and cancer. This systematic 

review identified 231 anti-inflammatory metabolites from Aspergillus fungi species, with 

four showing strong multi-target inhibition potential. Aspergillus species are highlighted 

as rich sources of anti-inflammatory compounds like alkaloids, terpenoids, and 

polyketides. However, more in vivo studies are needed to understand their 

mechanisms of action and translate it to clinical settings. 
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Main contributions: Assistance to conceive the idea and to draft the manuscript, 

assistance to data collection and analysis, and in the elaboration of the final manuscript 

version. 

 

N°5 - Research article (2022): Anti‐inflammatory markers of hops cultivars 

(Humulus lupulus L.) evaluated by untargeted metabolomics strategy  

 
Hops (Humulus lupulus L.) are edible flowers commonly used to add flavour and aroma 

to beer, besides they have rich chemical diversity and medicinal potential. In this work, 

an ex vivo anti-inflammatory assay via the LPS-induced signalling pathway and 

metabolomics approaches were performed to evaluate the ability of hops to inhibit the 

production of prostaglandin E2 (PGE2) inflammatory mediator and analyze which 

metabolites produced by the nine different hop cultivars are potential anti-inflammatory 

markers. Columbus, Chinook and Hallertau Mittelfrüh hop cultivars yielded extracts 

with PGE2 release inhibition rates of 86.7, 92.5 and 73.5 %, respectively. According to 

the multivariate statistical analysis, the majority of the metabolites correlated with the 

activity were prenylated phloroglucinol and phenolic homologs. These results suggest 

promissory anti-inflammatory hop metabolites. 

 

Main contributions: To aid in drafting the manuscript, to assistance in building the 

metabolomics models, and assistance in the execution of anti-inflammatory assays as 

well as statistical analysis of the results, to aid in gas phase fragmentation reactions 

interpretation, to aid in the elaboration of the final manuscript version. 

 

N°7 - Research article - (2023): Anti‐inflammatory activity of Lauraceae plant 

species and prediction models based on their metabolomics profiling data  

 
The Lauraceae is a botanical family known for its anti-inflammatory potential. However, 

several species have not yet been studied. Thus, this work aimed to screen the anti-

inflammatory activity of this plant family and to build statistical prediction models. The 

methodology was based on the statistical analysis of high-resolution liquid 

chromatography coupled with mass spectrometry data and the ex vivo anti-

inflammatory activity of plant extracts. The results demonstrated significant anti-
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inflammatory activity for several of these plants for the first time. Partial least square, 

artificial neural network, and stochastic gradient descent showed adequate fitting and 

predictive performance. Key anti-inflammatory markers, such as aporphine and 

benzylisoquinoline alkaloids were annotated with confidence level 2. Additionally, the 

validated prediction models proved to be useful for predicting active extracts using 

metabolomics data and studying their most bioactive metabolites. 

 

Main contributions: assistance to conceive the idea, to draft the manuscript, perform 

metabolite annotation, to build the metabolomics data prediction models, to aid in data 

analysis, to aid in the elaboration of the final manuscript version. 

 

N°8 - Research article – (2023):  New bicyclic [3.2.1] octane neolignan derivative 

from Aniba firmula with potent in vivo anti-inflammatory activity on account of 

dual inhibition 

 
Two new bicyclic octane neolignans, along with a known one, were isolated from Aniba 

firmula (Lauraceae) through HPLC fractionation. Their structures were identified using 

spectroscopic analysis. Lauraceae is recognized for its anti-inflammatory potential. In 

vivo assays in mice showed that the two new neolignans significantly inhibited croton 

oil-induced ear edema, with one also inhibiting neutrophil recruitment. The findings 

suggest that the inhibition of edema occurred via the COX pathway, while the LOX 

pathway was not involved. These results indicate that these neolignans have a unique 

anti-inflammatory mechanism, making them promising leads for developing new 

effective anti-inflammatory drugs. 

 

Main contributions: To aid in drafting the manuscript, to assistance plant material 

extraction and HPLC fractionation, and assistance in the execution of anti-

inflammatory assays and analysis of the results, to aid in the elaboration of the final 

manuscript version 

 

N°9  - Research article – (2023): In vivo evaluation of analgesic and anti-

inflammatory activity of hydroalcoholic extracts from Handroanthus 

impetiginosus and their chemical composition by UPLC/MS analysis  
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This study demonstrates in vivo analgesic and anti-inflammatory properties of 

hydroalcoholic extracts of leaves, bark and flowers from the Handroanthus 

impetiginosus (Bignoniaceae) plant, recognized as 'Ipê roxo' in Brazil. The extracts 

were evaluated in male Swiss albino mice via oral administration. The in vivo paw 

edema test induced by carrageenan revealed that extracts of leaves and bark 

displayed relevant anti-inflammatory activity potential at the dosage of 100 mg/kg, 300 

mg/kg, and 500 mg/kg. Likewise, the results obtained for leaves and flowers extracts 

suggested potent analgesic action in the conventional hot plate test. UPLC/MS 

analysis of the hydroalcoholic extracts samples identified metabolites belonging to 

several classes, mainly naphthoquinones and iridoids derivatives as well as flavonoids. 

The obtained results indicate that the extracts of H. impetiginosus plant parts could be 

considered as a complementary herbal medicine for the treatment of pain and 

inflammation disorders. 

 

Main contributions: assistance to draft the manuscript, to perform metabolite 

annotation, to aid data analysis and the elaboration of the final manuscript version. 

 

N°14 - Research article – (2024): LC-MS/DIA-based strategy for comprehensive 

flavonoid profiling: an Ocotea spp. applicability case  

 
We introduce a liquid chromatography – mass spectrometry with data-independent 

acquisition (LC-MS/DIA)-based strategy, specifically tailored to achieve 

comprehensive and reliable glycosylated flavonoid profiling. It was applied to a dataset 

of six Ocotea plant species. This framework suggested 49 flavonoids potentially newly 

described for these plant species, alongside 45 known features within the genus. 

Flavonols kaempferol and quercetin, both exhibiting O-glycosylation patterns, were 

particularly prevalent. For the first time, the apigenin flavone backbone was also 

annotated in most of the examined Ocotea species. Apigenin derivatives were found 

mainly in the C-glycoside form, with O. porosa displaying the highest flavone : flavonol 

ratio. This work has underscored the untapped potential of LC-MS/DIA data for broad 

and reliable flavonoid profiling. Our study annotated more than 50 flavonoid backbones 

in each species, surpassing the current literature. 
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Main contributions: assistance to conceive the idea, to draft the manuscript, to perform 

metabolite annotation and characterization, to aid in data analysis, to aid in the 

elaboration of the final manuscript version. 

  

N°15 - Research article – (2024): UHPLC-HRMS/DIA metabolic profiling of Ocotea 

diospyrifolia (Meisn.) Mez  

 
This study presents the comprehensive metabolic profiling of Ocotea diospyrifolia 

(Meisn.) Mez using Ultra-High Performance Liquid Chromatography coupled with 

High-Resolution Data-Independent Acquisition Mass Spectrometry (UHPLC-

HRMS/DIA). 43 distinct compounds were annotated across Metabolomics Standards 

Initiative (MSI) confidence levels 2, 3 and 4, including mainly alkaloids, glycosylated 

flavonoids, as well as lignoids, sesquiterpenoids and organic acids. This research 

highlights the advanced analytical capabilities for comprehensive metabolite analysis 

from a minimal amount sample, crucial for studying rare and endangered plants.  

 

Main contributions: assistance to conceive the idea, to draft the manuscript, to perform 

data processing, metabolite annotation and characterization, to aid in the elaboration 

of the final manuscript version. 

 

N°16 - Research article – (2024): Cytotoxic activity of Ocotea species on breast 

cancer cells: insights into selectivity and cell cycle modulation  

 
Breast cancer is the most common cancer in women and a leading cause of death, 

prompting the search for new treatments with fewer side effects. This study 

investigates the cytotoxic activity of extracts from 60 Ocotea species, known for their 

pharmacological properties, against breast cancer cells (MCF-7). Using the MTT 

assay, the IC50 values were calculated to assess cytotoxicity and selectivity towards 

cancer cells. Ocotea villosa extract showed promising results, with an IC50 of 100 

µg/mL, inhibiting colony formation, cell migration, and inducing a G1/S cell cycle arrest. 

These findings suggest O. villosa's potential as a promising therapeutic candidate for 

more effective and selective breast cancer treatment with fewer adverse effects. 
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Main contributions: assistance to conceive the idea, to draft the manuscript, to perform 

plant material extraction, metabolite annotation, and to aid in the elaboration of the 

final manuscript version. 

 

N°17 - Research article – (2024): Evaluation of the anti-inflammatory activity of 

Acacia polyphylla and identification of a new apigenin-3-C- glycosylated type 

flavonoid  

 
Due to the harmful side effects of current anti-inflammatory drugs, this study focused 

on identifying new alternative substances by analyzing A. polyphylla. Various fractions 

of the A. polyphylla extract were tested in an ex vivo anti-inflammatory assay. The BH 

fraction showed the highest PGE2 inhibition (74.8%), outperforming reference drugs 

like dexamethasone and indomethacin, demonstrating relevant anti-inflammatory 

activity. Astragalin, a known 3-O-glucoside of kaempferol, was also isolated from A. 

polyphylla for the first time and exhibited moderate PGE2 inhibition (48.3%), while a 

newly identified compound, an apigenin-3-C-glycosylated flavonoid derivative, showed 

no anti-inflammatory activity. Besides, this study confirms the anti-inflammatory 

potential of A. polyphylla. 

 

Main contributions: To aid in drafting the manuscript, to assistance HPLC fractionation, 

and assistance in the execution of anti-inflammatory assays as well as statistical 

analysis of the results, to aid in the elaboration of the final manuscript version. 

 

N°18 - Research article – (2024): Ex vivo inhibition of PGE2 formation in human 

blood by four bicyclico [3.2.1] octane neolignans isolated from Aniba firmula 

bark, two with unusual structural pattern  

 
Phytochemical investigation of the stem bark extract of Aniba firmula (Lauraceae) led 

to the isolation of two new bicyclic [3.2.1] octane neolignans, along with two known 

ones. These compounds were tested for their anti-inflammatory potential using an ex 

vivo model, focusing on the inhibition of the prostaglandin E2 (PGE2) inflammatory 

mediator as A. firmula stands out in the Lauraceae family as a source of potentially 

bioactive compounds. 2 and 3 exhibited significant anti-inflammatory activity by 

inhibiting the production of PGE2 in plasma samples, thus by interference with the 
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cyclooxygenase (COX) inflammatory pathway. These findings suggest that the bicyclic 

octane neolignan class holds promise for developing new anti-inflammatory agents. 

 

Main contributions: To aid in drafting the manuscript, to assistance in sample 

preparation including extraction and fractionation, to assistance in the execution of 

anti-inflammatory assays and statistical analysis of the results, to aid in the elaboration 

of the final manuscript version. 

 

N°19 - Research article – (2024): Phytochemical investigation of Nigrospora 

zimmermanii isolated from Poincianella pluviosa (Sibipiruna): metabolites 

characterisation and screening for        anti-inflammatory activity  

 
Endophytic fungi within plant tissues are promising sources of bioactive natural 

products. This study investigated the anti-inflammatory potential of an endophytic 

fungus isolated from the Brazilian medicinal plant Poincianella pluviosa. The fungus, 

identified as Nigrospora zimmermanii (FPD13), showed significant anti-inflammatory 

effects by inhibiting prostaglandin E2 (PGE2) release by 75.22% in an ex vivo assay. 

Phytochemical analysis led to the identification of three compounds: Nigrosporolide (a 

macrolide), Tyrosol (a phenyl-propanol), and Decarestrictine A (a terpene). These 

findings highlight the chemical diversity and anti-inflammatory potential of P. pluviosa 

endophytes, suggesting the need for further research into their bioactive metabolites. 

 

Main contributions: To aid in drafting the manuscript, to assistance HPLC fractionation 

and metabolite characterization, and assistance in the execution of anti-inflammatory 

assays as well as statistical analysis of the results, to aid in the elaboration of the final 

manuscript version. 

 

N°20 - Research article – (2024): Novel synthesized benzophenone thiazole 

hybrids exhibited ex vivo and in silico anti-inflammatory activity  

 
Novel benzophenone–thiazole hybrids with different substituents were synthesized 

and evaluated for anti-inflammatory activity using an ex vivo human whole-blood 

assay. All hybrids (3c and 5a–h) showed significant anti-inflammatory activity via 

prostaglandin E2 (PGE2) release inhibition. Moreover, 5c (82.8% of PGE2 inhibition), 
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5e (83.1% of PGE2 inhibition), and 5h (82.1% of PGE2 inhibition) were comparable to 

the reference drugs. Molecular docking revealed potential preferable binding to the 

active sites of cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase-

1 (mPGES-1) enzymes. This study provides the first evidence that benzophenone–

thiazole hybrids may also dock in mPGES-1, a new attractive anti-inflammatory drug 

target, besides providing promising ex vivo anti-inflammatory activity. Thus, the novel 

hybrids are promising anti-inflammatory lead compounds and highlight the significance 

of optimal substituent selection in the design of potent PGE2 inhibitors 

 

Main contributions: Assistance to conceive the idea, to aid in drafting the manuscript, 

to assistance in the execution of anti-inflammatory assays and statistical analysis of 

the results, to aid in the elaboration of the final manuscript version. 

 

N°22 - Research article – (2024): Metabolomics unveils disrupted pathways in 

Parkinson's disease: towards biomarker-based diagnosis   

 
Parkinson's disease (PD) is a neurodegenerative disorder with complex symptoms, 

making accurate diagnosis challenging. This study used untargeted metabolomics, 

coupled with machine learning, to identify novel serum biomarkers for PD in a Brazilian 

cohort. Analyzing samples from 39 PD patients and 15 healthy controls, 15 metabolites 

were significantly associated with PD, with 11 being potential biomarkers identified for 

the first time. Disrupted metabolic pathways include caffeine metabolism, arachidonic 

acid metabolism, and primary bile acid biosynthesis. The machine learning model 

achieved a high accuracy of 94.1% in distinguishing PD patients from controls, 

surpassing the 80% accuracy of traditional clinical evaluations. These findings could 

improve the detection and monitoring of PD, paving the way for more precise 

diagnostics and therapeutic interventions. Our research emphasizes the role of 

metabolomics and machine learning in advancing our understanding of the chemical 

profile of neurodegenerative diseases. 

 

Main contributions: To aid in drafting the manuscript, to assistance in data processing 

and interpretation, including metabolite annotation, pathway identification, and 

machine learning model prediction, to aid in the elaboration of the final manuscript 

version. 
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8. FINAL REMARKS 

Metabolomics has overcome several of the practical challenges inherent to NP 

chemistry research, such as the speed of metabolite characterization when studying 

complex matrices. As a result, nowadays it represents a vital bridge between the 

intrinsic properties of compounds and the rediscovery of NP for drug discovery. The 

advent of more standardized databases, along with new chemometric tools and 

computational chemistry now allow for the rapid annotation and potential identification 

of previously reported compounds, while simultaneously pointing to unknown and 

novel bioactive compounds with therapeutic potential. 

The cumulative findings of this project underscore the Ocotea genus as a rich source 

of bioactive compounds, with several species being acknowledged for significant 

pharmacological potential. This thesis presents a comprehensive investigation into the 

chemical diversity of the Ocotea genus, expanding the understanding of its 

metabolome and the practical implications of its bioactive compounds, particularly for 

bioprospecting anti-inflammatory compounds. Among these, Ocotea villosa stands out 

as a particularly promising species, exhibiting great anti-inflammatory effects, 

potentially with mechanisms of action different from current inflammatory drugs in the 

market. 

Chapter I laid the groundwork by consolidating all known metabolites of Ocotea 

into the OcoteaDB, an in-house database that can be used as a valuable tool for the 

characterization of Ocotea species in further studies in the literature. Also a foundation 

for NP studies targeting bioactive compounds in the genus. This chapter also provided 

detailed insights into the biosynthetic pathways that give rise to bioactive scaffolds in 

the genus. By tracing these specialized biosynthetic routes, this work bridges the gap 

between NP chemistry and the broader pharmacological potential of Ocotea species. 

Chapter II employed an untargeted metabolomics approach to chemically profile 

60 different Ocotea species, many of which had never been chemically studied before. 

The exploratory analysis identified significant biomarkers correlated with anti-

inflammatory activity, specifically through the inhibition of PGE2, one of the crucial 

mediators in the inflammatory cascade. By correlating chemical profiles with 

pharmacological data, this work revealed critical alkaloids, such as aporphines and 

benzylisoquinolines, which part of them were already reported to possess notable anti-
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inflammatory properties. The discovery of these biomarkers from underexplored 

species highlights the bioprospecting potential of Ocotea for drug discovery. 

Chapter III advanced the exploration of the genus by performing an untargeted 

study in promising species focusing on dual COX/LOX inhibitory biomarkers by 

concatenating data coming from UPLC-MS and NMR techniques. Multivariate 

statistics supplemented by machine learning models and STOCY annotated key 

markers, including alkaloids of both aporphine and benzilisoquinoline subclasses, one 

glycosylated flavonoid, and a sesquiterpenoid. These compounds were correlated to 

the dual anti-inflammatory activity, through simultaneous inhibition of PGE2 and LTB4 

releasing. This chapter corroborates the anti-inflammatory relevance of previously 

correlated metabolites and points out novel potential anti-inflammatory agents. This, 

research emphasizes the potential of UPLC/MS – NMR data concatenation strategies 

for untargeted plant metabolomics studies.   

Chapter IV presents the DIA-IntOpenStream pipeline, an open-source workflow 

designed to facilitate and enhance the annotation of complex metabolomics MSE/DIA 

data using open software and tools. By putting together the advantages of MZmine 

and MS-DIAL software, and generating fast custom in-house databases using KNIME, 

this workflow addresses challenges in data processing and molecular networking of 

DIA-MS data using the GNPS platform. Its application to the Ocotea plant dataset 

demonstrated its effectiveness in annotating known compounds in complex matrices 

and offering a scalable and accessible solution for NP research. The inclusion of a 

publicly available actinobacterial extract spiked with authentic standards allowed 

detailed comparative analysis with existing methods. The pipeline holds promise for 

speeding up metabolite discoveries using DIA data towards more collaborative NP-

based metabolomics research. 

Therefore, the main scientific contributions of this thesis are twofold. First, it 

offers a detailed chemical and anti-inflammatory profile of several Ocotea species, 

many of which were chemically or pharmacologically investigated for the first time. 

Second, it provides innovative methodologies and practical tools for future 

bioprospecting, particularly under untargeted metabolomics and NP drug discovery. 

The discrimination of bioactive markers in Ocotea species underscores the urgent 

need to conserve these species, as many face the risk of extinction within different 

Brazil’s biomes. Protecting biodiversity is not only crucial for maintaining ecological 

balance, but also for preserving the vast, untapped medicinal potential of these plant 
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species. By integrating classical phytochemistry with cutting-edge techniques such as 

UPLC/MS and NMR, alongside multivariate statistical analysis, STOCSY, molecular 

networking, and machine learning methods, this work establishes a solid foundation to 

prospect novel anti-inflammatory candidates using a minimal amount of plant sample 

extract and human blood volume to perform highly scalable ex-vivo screening anti-

inflammatory experiments. These results corroborate future drug discovery efforts 

rooted in modern bioprospecting strategies, which simultaneously can alert and raise 

efforts for biodiversity protection.  

Ultimately, NPs have long been central to drug discovery, as they offer an 

unparalleled arsenal of molecules shaped over millions of years through evolution on 

this planet. This thesis reinforces their continued relevance as sources of therapeutic 

innovation, particularly in the research of innovative anti-inflammatory treatments. 

Looking ahead, the isolation, semi-synthesis or synthesis of these metabolites, 

evaluation of their individual and synergic anti-inflammatory effects, and the further 

integration of metabolomics with other omics studies could be crucial to fully map all 

the metabolic pathways, targeted proteins and cells, and the mechanisms behind the 

anti-inflammatory activity of Ocotea species in a range of different pathological 

conditions. Herein, the obtained results support untargeted metabolomics for 

bioprospecting bioactive markers in the Ocotea genus, but also highlight the need for 

biodiversity protection in safeguarding future drug discovery. 
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